No. of Printed Pages: 4

BCE-046

DIPLOMA IN CIVIL ENGINEERING DCLEC(G)

Term-End Examination

December, 2014

00805

BCE-046 : SOIL MECHANICS AND FOUNDATION ENGINEERING

Time: 2 hours

Maximum Marks: 70

Note: Attempt any five questions out of the following. Notations given have their usual meanings. All questions carry equal marks.

- 1. (a) Derive the relationship between $\gamma_{sat},$ $\gamma_{bulk},$ γ_{drv} and S.
 - (b) A soil sample is partially saturated. Its natural water content is found to be 20% and bulk density 21 kN/m³. If the specific gravity of the solid particles is 2·7 and the unit weight of water is 10 kN/m³, find out the degree of saturation and void ratio.
- 2. (a) Discuss the particle size classification as per IS: 1498-1970.

7

7

- (b) A sample of sand has a volume of 1050 cc in its natural state. On drying and compaction by vibration, its minimum volume is 900 cc. When gently poured in a measuring cylinder, the maximum volume is 1400 cc. Find the relative density.
- **3.** (a) What do you mean by permeability? Discuss the factors affecting permeability.
 - (b) A sand deposit is made up of three horizontal layers of equal thickness. The permeability of top, middle and bottom layers is 2×10^{-5} mm/sec, 3×10^{-5} mm/sec and 3.5×10^{-3} mm/sec respectively. Find the equivalent permeability in the vertical direction.
- 4. (a) Discuss the various drainage conditions during measurement of shear strength. Also simulate the drainage conditions with actual geotechnical problems.
 - (b) A vane 100 mm in diameter and 200 mm in height, was pressed into soft clay in a borehole. The torque was applied and gradually increased to 100 N-m when failure took place. Determine the undrained shear strength.

7

7

7

7

5. (a) Briefly describe the field determination of soil density.

(b) The results of Standard Proctor Test on a medium grained sandy soil are as follows:

Moisture content (%)	Wet unit weight (kN/m ³)
6.76	20.94
8.5	22.48
9.39	22.29
11.07	21:37
11.94	20.82

$$G_s = 2.65$$
; $\gamma_w = 10 \text{ kN/m}^3$.

Plot the data and determine the optimum moisture content and maximum dry density.

6. (a) Discuss the various properties of soil affected by disturbance during sampling.

(b) Describe the seismic refraction method for soil exploration.

7. A square footing having a size of 2 m \times 2 m has to transmit the load of a column at a depth of 1.8 m. Calculate the safe load which the footing can carry at a factor of safety of 3 against shear failure. The soil has the following properties: $C = 10 \text{ kN/m}^2$; $\gamma = 18 \text{ kN/m}^3$; $\phi = 30^\circ$; $N_c = 30.14$; $N_q = 18.40$; $N_{\gamma} = 22.40$.

Use IS code method.

14

7

7

7

8. (a) Enumerate the various types of foundations and discuss the applicability of Mat foundation.

7

(b) A precast concrete pile is being driven with a 50 kN hammer having a free fall of 1.0 m. If the penetration in the last blow is 6 mm, determine the allowable load carrying capacity of the pile according to Engineering News Record Formula.