BME-021

BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING) / B.Tech. (AEROSPACE ENGINEERING) (BTAE)

Term-End Examination
December, 2014

BME-021 : PRINCIPLES OF ELECTRICAL AND ELECTRONICS SCIENCES

Time: 3 hours Maximum Marks: 70

Note: Answer any **seven** questions in all — three question from section A, three questions from section B. Question one is compulsory.

- 1. State whether the following statements are *True* or *False*. $10 \times 1 = 10$
 - (a) In short circuit test, the iron losses are negligible.
 - (b) A three-phase induction motor has zero torque at synchronous speed.
 - (c) In delta connected systems, the reactive power is given by the relation, $\sqrt{3} \ V_{\rm Ph} \ I_{\rm Ph} \cos \phi$

- (d) The RLC series circuit is inductive at resonance.
- (e) Sine wave has unity form factor.
- (f) TRAP hardware interrupt has the highest priority.
- (g) 80386 Microprocessor is code-named as P3.
- (h) Universal motor is a constant speed motor.
- (i) TRIAC can conduct in both directions.
- (j) AND gate is a universal gate.

SECTION A

Attempt three questions from this section.

2. (a) State and explain Norton's theorem with suitable example.

4

(b) Using Thevenin's Theorem, calculate the potential difference across terminal A and B, as shown in Figure 1.

3. (a) For the output of full wave rectifier, determine

6

- (i) rms value
- (ii) average value
- (iii) form factor

(b) Explain series resonance. Why is series resonance called voltage resonance?

4

- What is coefficient of coupling? Prove that 4. (a) $K = \frac{M}{\sqrt{L_1 L_2}}$, where K, M, L₁, L₂ have 6 their usual meanings. What is magnetic circuit? Explain B-H **(b)** curve as applied to magnetic material. 4 5. (a) Why is single phase induction motor not self-starting? Explain. 4 What is a transformer? Explain its (b) principle of working. 3 A three-phase 4-pole, 50 Hz induction **(c)** motor is rotating at 1450 rpm. Find out synchronous speed and % slip of induction 3 motor.
- **6.** (a) Prove that the energy stored in an inductor is given by $\frac{1}{2}LI^2$.

4

- (b) A coil of 100 turns is wound on torroidal magnetic core having reluctance of 10⁴ At/Wb. When the coil current is 5 A, and is increasing at the rate of 200 A/sec, determine
 - (i) self-inductance of coil,
 - (ii) energy stored
 - (iii) self-induced emf in coil.

SECTION B

 $Attempt \ \textbf{three} \ questions \ from \ this \ section.$

7.	(a)	Explain the data bus, address bus and control bus in a typical microprocessor architecture. Give a suitable diagram. Explain the architecture.	6
	(b)	Explain the various registers of 8085. Name the 16-bit registers. Discuss the role of each register in mathematical operations.	4
8.	(a)	Explain the operation of a Negative-Impedance Converter (NIC) using op-amp.	5
	(b)	Draw the small signal equivalent circuit of BJT and MOSFET.	5
9.	(a)	Draw the block diagram of IC 555 timer and explain its various modes of operation.	5
	(b)	Explain the operation of a full wave diode bridge rectifier with diagrams.	5
10.	(a)	What are shift registers? What are the different types of shift registers? Explain any two.	5
	(b)	Draw the diode ROM matrix and a basic RAM cell.	5

11. (a) Draw and explain the circuit diagram of DAC and ADC.
(b) Describe and explain De Morgan's Theorems.