No. of Printed Pages: 4

BME-019

B.Tech. MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING) / **BTMEVI**

01455

Term-End Examination

December, 2014

BME-019: ENGINEERING THERMODYNAMICS

Tin	ne : 3 .	hours Maximum Marks:	Maximum Marks : 70	
Note: Attempt any seven questions. All questions ca equal marks.			ırry	
1.	(a)	Explain Thermodynamic systems with suitable examples.	5	
	(b)	Discuss various Thermodynamic properties.	5	
2.	(a)	Define pressure. Give the relationship between absolute pressure, atmospheric pressure and gauge pressure.	5	
	(b)	Explain Zeroth law of Thermodynamics. Give one example.	5	

Discuss Kelvin Temperature Scale. 3. (a)

5

The temperature readings t_1 and t_2 of two (b) Celsius thermometers agree at the ice point and at the steam point. They are related by the equation $t_1 = A + Bt_2 + Ct_2^2$ between these two points, where A, B and C are constants. When both are immersed in an oil bath, t_1 is 51°C and t_2 is 50°C. Determine the value of t_1 when t_2 reads 25°C.

5

Compare work and heat. 4. (a)

5

Explain Joule's experiment to (b) $\oint \delta W = \oint \delta Q.$

5

Explain Carnot cycle and Carnot engine. 5. (a)

5

Explain the terms reversibility (b) irreversibility with the help of suitable examples.

5

- 6. (a) Take three hypothetical heat engines A, B and C, each operating between 1,000 K and 300 K. When each engine involves itself with a heat interaction of 1,000 kJ with HTR, it is claimed that while 'A' develops a work of 600 kJ, B and C develop 700 kJ and 800 kJ. Use the Carnot statement and identify the engines A, B and C as reversible, irreversible, or impossible.
- 6
- (b) What is entropy? Explain that the entropy of Universe always tends to increase.
- 4
- 7. (a) Explain available and unavailable energy. 5
 - (b) Prove that change of entropy for unit mass is given by,

$$s_2 - s_1 = C_v \ln \frac{T_2}{T_1} + R \ln \frac{v_2}{v_1}.$$
 5

- 8. (a) Explain Vapour Compression Refrigeration system.
- 5

(b) Explain any *two* of the following:

5

5

5

- (i) Refrigerating effect
 - (ii) Capacity of VCRs
 - (iii) Ton of refrigeration
- 9. (a) With a neat sketch explain Brayton cycle.
 - (b) Derive the equation for volumetric efficiency of reciprocating air compressors.

10. (a) What is intercooling? Explain with a PV diagram of 2-stage reciprocating air compressor.

5

(b) Derive the expression for work input for single stage reciprocating air compressor.

5