P.T.O.

B.Tech. AEROSPACE ENGINEERING (BTAE)

00465

BAS-012

Term-End Examination December, 2014

BAS-012: AERODYNAMICS - I

Time: 3 hours		hours Maximum Marks .	Maximum Marks : 70	
Note: Attempt any seven questions. All questions carry equal marks. Use of scientific calculator is permitted.				
1.	(a)	How do the laminar and turbulent boundary layers differ from each other? Explain with neat sketches.	6	
	(b)	State and explain the Bernoulli's equation for incompressible flow.	4	
2.	(a)	Draw the propagation of disturbance waves for subsonic and supersonic conditions.	4	
	(b)	Derive the fundamental equation for thin airfoil theory. State the assumptions made.	6	
3.	Explain downwash and induced drag. Also show how induced drag affects the angle of attack.		10	
4.		rive an expression for vorticity in terms of the ocities in x, y and z directions respectively.	10	

1

- **5.** (a) Define angular velocity, strain rate and vorticity of a fluid element.
 - (b) Consider the velocity field given by $u=\frac{y}{x^2+y^2} \text{ and } v=\frac{-x}{x^2+y^2} \text{ . Calculate the}$ equation of the streamline passing through

6

10

4

- **6.** Explain in detail the boundary layer separation with the help of neat sketches.
- 7. Explain the construction and working of a subsonic wind tunnel with the help of a neat diagram.
- **8.** Define the following terms: $5\times 2=10$
 - (a) Wave drag
 - (b) Stall velocity
 - (c) Aerodynamic centre

the point (5, 5).

- (d) Neutral point
- (e) Centre of pressure
- 3. Write short notes on any **two** of the following:

2×5=10

- (a) Drag Divergence Mach Number
- (b) Newton's Law of Viscosity
- (c) Fundamental Gas Laws
- (d) Source and Sink Flow