No. of Printed Pages: 4

MCS-031

MCA (Revised)

11324 Term-End Examination December, 2014

MCS-031 : DESIGN AND ANALYSIS OF ALGORITHMS

Time : 3 hours

Maximum Marks : 100

Note: Question number 1 is compulsory. Answer any three questions from the rest.

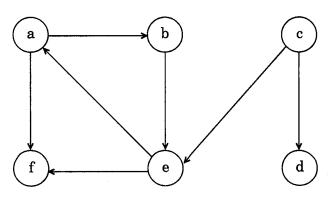
- 1. (a) (i) Write an algorithm to build a heap from a given sequence.
 - (ii) Illustrate the heap sort algorithm on the sequence <10, 5, 12, 6, 9, 2, 8, 16>.

6+6

(b) (i) Solve the recurrence equation

$$T(n) = \begin{cases} 2T\left(\frac{n}{2}\right) + O(n^2), & n > 1 \\ 1 & n \le 1 \end{cases}$$

(ii) Prove that $f(n) = 2n^3 + 3n + 5$ is $O(n^3)$.


MCS-031

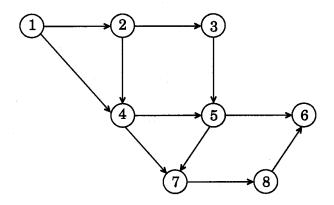
P.T.O.

(iii) Solve the recurrence

$$T(n) = T\left(\frac{n}{2}\right) + 1 \text{ for } (n \ge 2)$$

- = 1 n < 2. 4+4+4
- (c) (i) List the major differences between Divide and Conquer and dynamic programming design techniques for solving problems.
 - (ii) Define fractional Knap-Sack problem, and give a greedy algorithm to solve this problem efficiently. 5+5
- (d) Give a recursive function to find the height of a binary tree. What is the running time of this algorithm ?
- 2. (a) What is depth first search ? Give the DFS traversal for the following graph, starting with node 'a'.

2


MCS-031

P.T.O.

6

6

- (b) Identify the tree edges, back edges and forward edges.
- (c) Give an algorithm for topological sort. Obtain a topological ordering for the following graph :

- 3.
- (a) Explain the Kruskal-algorithm for Minimum Spanning Tree construction.
 Derive the running time of the algorithm.
 - (b) Show the MST corresponding to the following adjacency matrix representation of a graph :

	a	b	с	d	е
a	—	1	15	-	5
b	1	_	2	_	10
c	15	2	-	8	6
d		_	8		3
е	5	10	6	3	_

3

MCS-031

P.T.O.

8

10

10

4.	(a)	Define Regular Languages. Write regular expression corresponding to the following languages over alphabet {a, b}.				
		(i) Strings with even length.				
		(ii) Strings with odd number of a's and even number of b's. 8				
	(b)	Write context free grammar for the following languages.				
	(i) Even palindromes over {a, b}.					
		(ii) Odd palindromes over {a, b}. 6	I			
	(c)	If L_1 and L_2 are context free languages, prove that $L_1 \cup L_2$ is also context free.				
5.	(a)	Define the Class P, NP and NP-complete problems.	1			
	(b)	Show a polynomial time reduction from the Clique problem to the Vertex Cover problem by giving an example. 9				
	(c)	Give the formal definition of a Turing machine. 5				

11,000