CS-73

BACHELOR OF COMPUTER APPLICATIONS (Pre-Revised) Term-End Examination December, 2014

CS-73 : THEORY OF COMPUTER SCIENCE

Time : 3 hours

Maximum Marks: 75

Note: Question number 1 is compulsory. Attempt any three questions from the rest.

- 1. (a) If languages L_1 and L_2 are regular, show that their union $L = L_1 \cup L_2$ is also regular.
 - (b) Convert the following Mealy machine to equivalent Moore machine :

Current State	Symbol Input	Output	Symbol Input	Output
\rightarrow q ₀	q ₁	1	q_2	1
q ₁	q_2	0	q ₀	1
q_2	• q 0	1	q ₁	0

(c) Write the context free grammar to create palindrome over {a, b}.

4

5

5

P.T.O.

- (d) Design a Turing Machine to compute the sum of two positive integers m and n. 5 Prove that "If a language L is recursive (e) then its complement \overline{L} is also recursive". 5 Cite examples of any four NP complete (f) problems. $\mathbf{2}$ Show that the sum function f(x, y) = x + y(**g**) is primitive recursive. 4 2. Use pumping lemma for regular sets to (a) prove that the language $L = \{a^p \mid p \text{ is prime}\}$ is not regular. 5 (b) Construct finite automaton corresponding to the regular expression $(a + b)^* c d^*e$. 4
 - (c) Determine whether the following finite automata are equivalent :

6

6

3. (a) Explain how can context free grammar be used to describe the syntax of an assignment statement in programming language. (Assignment statement example a = b + c * d)

	(b)	Design a push down automaton to accept the language L = $\{a^w b^{n+2} \mid n \ge 1\}$.	4
	(c)	Convert the following grammar to Chomsky Normal Form :	5
		$S \rightarrow aA \mid bB A \rightarrow bAA \mid a B \rightarrow BBa \mid b$	
4.	(a)	Explain the multitape version of Turing machine and its significance.	5
	(b)	Explain Chomsky Hierarchy of grammars, with an example.	5
	(c)	Show that the diagonalisation language L_d is not Turing acceptable.	5
5. (a	(a)	Write a short note on Post Correspondence problem.	5
	(b)	Show that the Halting problem of Turing machine is undecidable.	5
	(c)	Describe the concept of reduction. How is it used to establish the NP completeness of a problem ?	5