No. of Printed Pages: 4

BACHELOR OF COMPUTER APPLICATIONS (Pre-Revised)

05364

Term-End Examination

December, 2014

CS-71 : COMPUTER ORIENTED NUMERICAL TECHNIQUES

Time: 3 hours

Maximum Marks : 75

Note: Question number 1 is compulsory. Attempt any three from questions number 2 to 5. Calculator is allowed.

- 1. (a) Show that $\frac{(a-b)}{c} \neq \frac{a}{c} \frac{b}{c}$, where a = 0.41, b = 0.36 and c = 0.70 using two decimal digit arithmetic with rounding.
 - (b) Given $\sqrt{2} = 1.414214$. Approximate it to 1.414. Find absolute and relative error in approximation.
 - (c) Solve the following system of equations using Jacobi method, rounded to four decimal places:

20x + y - 2z = 173x + 20y - z = -182x - 3y + 20z = 25

P.T.O.

 $\mathbf{5}$

5

- (d) Using Newton-Raphson method, find the square root of 10 with initial approximation $x_0 = 3$.
- (e) Find the value of x, when y = 3 for the following values using Lagrange's Interpolation Polynomial :

x	4	7	10	12
у	-1	1	2	4

(f) Solve the following initial value problem using optimal R-K method of $O(h^2)$

where
$$y' = -ty^2$$
, $y(2) = 1$.
Find $y(2 \cdot 1)$; $h = 0 \cdot 1$.

- 2. (a) Find real root of the equation $f(x) = x^3 - 5x + 1 = 0$ using Bisection method, perform 3 iterations only.
 - (b) Solve the following system of equations by Gauss Elimination method :

$$2x + y + z = 10$$

 $3x + 2y + 3z = 18$
 $x + 4y + 9z = 16$

(c) Find Lagrange Interpolating Polynomial for

x	1	2	4
f(x)	1	7	61

Also, find f(3).

CS-71

5

5

5

5

5

- 3. (a) Find root of the equation $x^3 5x + 1 = 0$ by Regula Falsi method, perform 3 iterations.
 - (b) Perform two iterations of Gauss-Seidel method to solve the following system of equations:

 $10x_1 - 2x_2 - x_3 - x_4 = 3$ - 2x₁ + 10x₂ - x₃ - x₄ = 15 - x₁ - x₂ + 10x₃ - 2x₄ = 27 - x₁ - x₂ - 2x₃ + 10x₄ = -9

starting with $(x_1, x_2, x_3, x_4) = (0,0,0,0)$.

(c) Evaluate $\int_{1}^{r} f(x) dx$ using Trapezoial Rule

for the following :

x	1	2	3	4	5	6	7
у	2·105	2.808	3.614	4 ∙604	5.857	7 · 4 51	9·467

4. (a) Using Third Order Taylor Series method, find the solution of differential equation xy' = x - y, y = 2 at x = 2, h = 1.

(b) Evaluate
$$\int_{0}^{1} \frac{dx}{1+x^2}$$
 by subdividing the

interval (0, 1) into 6 equal parts using $\frac{1}{3}^{rd}$ Simpson Rule.

CS-71

P.T.O.

5

5

5

(c) Construct Newton's Forward Difference table for the data :

x	3	5	7	9
f(x)	6	24	38	108

Hence approximate f(4) from Newton's forward difference interpolating polynomial.

- 5. (a) Use Euler method to find solution of y' = t + y given y(0) = 1. Find solution on [0, 0.8] with h = 0.2.
 - (b) Use fourth order Runge-Kutta method for equation $\frac{dy}{dx} = 1 + y^2$ where y = 0 when x = 0.

Find y (0.2), h = 0.2 upto four decimal places.

(c) Prove that
$$\delta = \sqrt{E} - \frac{1}{\sqrt{E}}$$
. 5

CS-71

5

5