DIPLOMA IN ELECTRICAL ENGINEERING (DELVI)

Term-End Examination 00651 December, 2012

BIELE-005: INDUSTRIAL ELECTRONICS

- Note: (i) Question no.1 is compulsory(objective).
 - (ii) Attempt any four questions from rest of the questions.
 - (iii) Draw neat and clean circuit diagrams if any required.
- 1. Attempt all objective type questions: 7x2=14
 - (a) NPN transistors are preferred over PNP transistors because :
 - (i) Low heat dissipation
 - (ii) Cheap and easily available
 - (iii) High mobility of holes
 - (iv) Higher mobility of electrons than holes in PNP transistors.
 - (b) A power BJT is a
 - (i) Voltage controlled majority carrier device.
 - (ii) Current controlled majority carrier device.
 - (iii) Current controlled minority carrier device.
 - (iv) Voltage controlled minority carrier device.

- (c) When a SCR gets turned ON, the gate drive:
 - (i) should not be removed or it will turn OFF the SCR
 - (ii) may or may not be removed
 - (iii) should be removed
 - (iv) should be removed in order to avoid increased losses and higher function temperature.
- (d) Freewheeling diode at the output of a rectifier allows:
 - (i) SCR to trigger properly
 - (ii) Turn-OFF SCR at the end of half cycle.
 - (iii) Protection of SCR against over voltage.
 - (iv) None of these
- (e) A four quadrant operations requires:
 - (i) two full converters in series
 - (ii) two full converters connected back to back.
 - (iii) two full converters connected in parallel.
 - (iv) two semi converters connected back to back.

- (f) When a UJT is used for triggering of an SCR, the wave shape of the voltage obtained from UJT circuit is,
 - (i) sine wave
 - (ii) saw-tooth wave
 - (iii) trapezoidal wave
 - (iv) square wave
- (g) In a three-phase half-wave rectifier the output voltage is equal to:
 - (i) the most positive input phase voltage at any instant
 - (ii) the difference of most positive and most negative input phases at any instant.
 - (iii) the average value of the three phases
 - (iv) the difference of the two positive phase voltages.
- 2. (a) Draw the symbols for the following: 7+7=14
 - (i) SCR
- (ii) DIAC
- (iii) TRIAC
- (iv) SCS
- (v) SUS
- (vi) LASCR
- (vii) IGBT
- (b) Explain the two transistor analogy of an SCR.
- (a) Describe basic structural features, working and equivalent circuit of an IGBT.
 - (b) Discuss the advantages of SCR over power BJT.

- 4. (a) Discuss the working of a UJT relaxation oscillator. 7+7=14
 - (b) Explain various types of triggering methods of SCR.
- 5. (a) Give schematic representation of a 7+7=14
 - (i) 3-phase half-wave rectifier circuit
 - (ii) 3-phase full-wave rectifier circuit
 - (iii) compare the rectification properties of the two.
 - (b) Differentiate between a half controlled bridge and a fully controlled bridge.
- 6. (a) Explain the operation of full wave mid point converter with RL load. 7+7=14
 - (b) With neat sketch, describe the function of a single phase half controlled bridge rectifier with resistive load. What will be the wave forms observed?
- 7. Discuss any two from the following: 2x7=14
 - (a) Thyristor applications.
 - (b) FBSOA of BJT
 - (c) PUT relaxation oscillator

- 8. Write short notes on *any four* of the following:
 - (a) IGBT operational characteristics

4x3.5=14

- (b) SCR turn OFF methods
- (c) Resistance firing circuit for SCR
- (d) Capacitor firing circuit for SCR
- (e) MCT's (Mos-controlled thyristor)
- (f) RCT's (Reverse conducting thyristor)

...