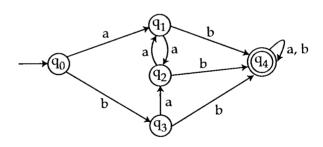
B.TECH. IN COMPUTER SCIENCE AND ENGINEERING (BTCSVI)

Term-End Examination December, 2012


BICS-018: THEORY OF COMPUTATION

Time: 3 hours Maximum Marks: 70

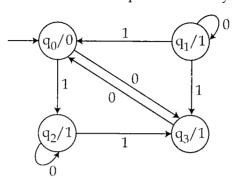
Note: Attempt any seven questions.

All questions carry equal marks.

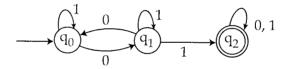
- 1. (a) Design a finite automation to accept the language L over $\{a, b\}$ such that $L = \{a^n b^m | n, m \ge 0 \text{ and } n+m \text{ is even}\}.$
 - (b) Construct a minimum state automation 5 equivalence to the following diagram.

2. (a) Design Moore and Mealy machine to 5 convert each occurrence of substring 100 by 101.

(b) Differentiate between Mealy and Moore machine and convert following Moore machine into an equivalent Mealy machine


5

5


5

5

5

3. (a) Find the regular expression for the following diagram :

- (b) Construct a DFA for equivalent regular expression (RE) $r = (01 + 2^*)^*1$.
- 4. (a) Explain pumping lemma for regular expression and show that language $L = \{a^n \ b^n \ c^n \ | \ n \ge 1 \} \text{ is not regular}.$
 - (b) Differentiate between Chomsky and Greibach Normal forms and convert the grammar

$$S \rightarrow ABb/a$$

$$A \rightarrow aaA/B$$

$$B \rightarrow bAb$$
 into GNF.

- 5. (a) Explain pumping lemma for context free language (CFL) and prove that the language $L = \{O^K \mid K \text{ is a perfect square}\}$ is not a CFL.
 - (b) Design a context free grammar (CFG) for the language $L(G) = \{a^{2n} b^m | n \ge 0, m \ge 0\}$.
- 6. (a) Differentiate between deterministic and non deterministic push down automata and explain equivalence between push down automata and context free grammars.
 - (b) Design a Push Down Automata (PDA) for 5 the language $L = \{a^n \ b^n \mid n \ge 1\}$.
- 7. (a) For the following PDA M, design the corresponding CFG G. $M = (\{q_0, q_1\}, \{0, 1\}, \{Z_0, K\}, \delta, q_0, Z_0, \phi) \text{ with transition function } \delta \text{ as follows :} \\ \delta(q_0, 1, Z_0) \vdash (q_0, K Z_0), \delta(q_0, 0, K) \vdash (q_1, K) \\ \delta(q_0, \epsilon, Z_0) \vdash (q_0, \epsilon), \quad \delta(q_1, 0, K) \vdash (q_1, \epsilon) \\ \delta(q_0, 1, K) \vdash (q_0, KK), \quad \delta(q_1, 0, Z_0) \vdash (q_0, Z_0)$
- 8. What is Turing Machine (TM)? Design a Turning 10 Machine (TM) which accept the string over {0, 1}, containing even number of 1's.
- Differentiate between NP-Complete and NP-Hard
 Problems and also discuss about vertex cover problem and Hamiltonian path problem with suitable examples.

BICS-018 3 P.T.O.

- 10. Write short notes on any two of the following: 2x5=10
 - (a) Hypothesis of Church
 - (b) Undecidability and Rice's theorem
 - (c) Recursive and recursively enumerable languages.