No. of Printed Pages: 5

BAS-002

B.TECH. (AEROSPACE ENGINEERING) (BTAE)

Term-End Examination December, 2012

01989

BAS-002: APPLIED CHEMISTRY

Time: 3 hours Maximum Marks: 70

Note: Answer seven questions in all. Question number 1 is compulsory. Use of calculator is allowed.

1. Define *any five* of the following:

5x2=10

- (a) Second law of thermodynamics
- (b) Le Chatelier principle
- (c) Frenkal defect
- (d) Specific conductance and its unit in SI.
- (e) Raoult's law
- (f) Condensation polymerisation with an example
- (g) Electronic configuration of outermost shell for p-Block and d-block elements.
- 2. Answer any two of the following:
 - (a) Compare the basic strength of the following and arrange them in increasing strength:
 NH₃ CH₂NH₂, (CH₃)₂NH, (CF₃)₃N

5

- (b) Draw and explain the nature of 5 conductomeric titration curve that you will get when AgNO₃ is added to KCl solution.
- (c) What do you understand by heterolytic and homolytic fission? Explain with examples.
- 3. (a) A compound, has a molecule, superimposable on its mirror image inspite of containing chiral carbon atom. What type of compounds show such phenomena? Explain with an example.
 - (b) What are inner transition elements? Write 5 down electronic configuration of the element with atomic number 61.
- 4. (a) Why $CuSO_4$. $5H_2O$ is blue whereas 2 $ZnSO_4$. H_2O is colourless? Explain
 - (b) What transition in the H-spectrum would have the same wavelength as the Balmer transition, n=4 to n=2 of He⁺ spectrum.
 - (c) Which one of the following will act as a strong base? Arrange the following in their increasing order of basicity.

 $(CH_3)_3COH$, CH_3OH , CH_3CH_2OH , $(CH_3)_2CHOH$

5. (a) In +ve electromeric effect, if an electrophile 4 is added to the following compound then in which direction π electron transfer will take place -

 C_3 to C_2 or C_2 to C_3 ? $CH_3 - CH = CH - CH_2 - CH_3$

(b) In the dehydration of the Compound, 3

CH₃-CH-CH₂-CH₃, we get two
OH

products namely

- (i) $CH_3 CH = CH CH_3$ and
- (ii) $CH_2 = CH CH_2 CH_3$

Which one will be the major product according to Saytzeff rule?

- (c) How many resonating structures will you get for the carbonium ion, $(CH_3)_3C^+$ due to hyperconjugation?
- 6. (a) What do you understand by

3

- (i) Green vitriol
- (ii) White vitriol
- (iii) Rochell salt
- (b) Explain the effect of

2

- (i) pressure and
- (ii) continuous removal of HI at constant temperature on the position of equilibrium for the following reaction

$$H_2(g) + I_2(g) \implies 2HI(g)$$

	(c)	constant for the above reaction, 6(b) by use of a catalyst? Match the column X with the column Y				2
						,
	(d)					3
			X		Y	
		(i)	NO_2	(A)	Yellow	
		(ii)	CHCl ₃	(B)	Colourless	
		(iii)	Pb_3O_4	(C)	Red	
		(iv)	CuSO ₄ .5H ₂ O	(D)	Brown	
		(v)	PbI ₂	(E)	Blue	
		(vi)	I ₂	(F)	Violet	
7.	(a)	HX is a weak acid ($K_a = 1.0 \times 10^{-5}$). It forms a salt Na × (0.1M) on reacting with caustic soda. Find the degree of hydrolysis. State Hund's rule. Explain it with reference				4
	(b)					2
	(D)	to electronic configuration of nitrogen atom.				
	(c)	(c) An element, M has atomic number 29. Give				
		the electronic configuration of M^+ and m^{2+}				
		ions.				
	(d)	What are the chief constituents of Portland				2
		cen	nent ?			
8.	(a)	The standard enthalpies of formation at 300				5

8. (a) The standard enthalpies of formation at 300 k 5 for $CCl_4(l)$, $H_2O(g)$, $CO_2(g)$ and HCl(g) are - 107, -242, -394 and -93 kJ mol $^{-1}$ respectively. Calculate the value of ΔE° at 300k for the reaction $CCl_4(l) + 2H_2O(g) \rightarrow CO_2(g) + 4HCl(g)$.

(b) Calculate the molar and equivalent conductivities at infinite dilution of potash alum $[K_2SO_4.Al_2(SO_4)_3.24H_2O]$ Neglect the conductance offered by H_2O .

5

Given:
$$\Lambda_m^{\infty}$$
 for $K^+ = 73.5 \ \Omega^{-1} \text{cm}^2 \text{ mol}^{-1}$
 Λ_m^{∞} for $A l^{3+} = 189.0 \ \Omega^{-1} \text{cm}^2 \text{ mol}^{-1}$
 Λ_m^{∞} for $S \overset{2-}{Q} = 160.0 \ \Omega^{-1} \text{cm}^2 \text{ mol}^{-1}$

9. (a) Identify the compounds A, B, C and D in the following transformations:

$$\begin{array}{c} \text{A} \xrightarrow{\text{Na}} \text{Na} \\ \xrightarrow{\text{NH}_3(l)} \text{B} \xrightarrow{\text{CH}_3l} \text{C} \xrightarrow{\text{H}_2(l\text{mol})} \text{D} \xrightarrow{\text{O}_2} \\ \downarrow \\ \text{CH}_3\text{CHO} + \text{HCHO} \end{array}$$

(b) Give IUPAC names for the following: 2, 1, 2

(iii)
$$(CH_3)_2 N - CH_2 \cdot CH_3$$