Course Code	$:$	BCS-012
Course Title	$:$	Basic Mathematics
Assignment Number	$:$	BCA(I)012/Assignment/2023-24
Maximum Marks	$:$	$\mathbf{1 0 0}$
Weightage	$:$	$\mathbf{2 5 \%}$
Last Date of Submission	$:$	$\mathbf{3 1}^{\text {st }}$ October, 2023 (For July Session)
		$\mathbf{3 0}^{\text {th }}$ April, 2024 (For January Session)

Note: This assignment has 16 questions of 80 marks (each question carries equal marks). Answer all the questions. Rest $\mathbf{2 0}$ marks are for viva voce. Please go through the guidelines regarding assignments given in the Programme Guide for the format of presentation.

Q1. If $\mathrm{A}=\left(\begin{array}{rr}3 & -1 \\ 2 & 1\end{array}\right)$,
Show that $A^{2}-4 A+5 I_{2}=0$. Also, find A^{4}.

Q2. Find the sum of first all integers between 100 and 1000 which are divisible by 7 .
Q3. a) If $p^{\text {th }}$ term of an A.P is q and $q^{\text {th }}$ term of the A.P. is p, find its $r^{\text {th }}$ term.
b) Find the sum of all the integers between 100 and 1000 that are divisible by 9 .

Q4. If $1, \omega, \omega^{2}$ are cube roots of unity, show that

$$
\begin{equation*}
(2-\omega)\left(2-\omega^{2}\right)\left(2-\omega^{19}\right)\left(2-\omega^{23}\right)=49 . \tag{5}
\end{equation*}
$$

Q5. If α, β are roots of $x^{2}-3 a x+a^{2}=0$, find the value(s) of a if $\alpha^{2}+\beta^{2}=\frac{7}{4}$.
Q6. If $\mathrm{y}=\operatorname{In} \frac{\sqrt{1+\mathrm{X}}-\sqrt{1-\mathrm{x}}}{\sqrt{1+\mathrm{X}}+\sqrt{1-\mathrm{X}}} \quad$, find $\frac{\mathrm{dy}}{\mathrm{dX}}$.
Q7. Evaluate : $\int x^{2} \sqrt{5 x-3 d x}$
Q8. Use De Moivre's theorem to find $(\sqrt{3}+i)^{3}$.
Q9. Solve the equation $x^{3}-13 x^{2}+15 x+189=0$, Given that one of the roots exceeds the other by 2 .
Q10. Solve the inequality $\left|\frac{2}{\mathrm{x}-1}>5\right|$ and graph its solution.
Q11. Determine the values of x for which $f(x)=x^{4}-8 x^{3}+22 x^{2}-24 x+21$ is increasing and for which it is decreasing.

Q12. Find the points of local maxima and local minima of

$$
f(x)=x^{3}-6 x^{2}+9 x+2014, x \in \mathbf{R} .
$$

Q13. Using integration, find length of the curve $y=3-x$ from $(-1,4)$ to $(3,0)$.

Q14. Show that the lines, given below, Intersect each other.

$$
\begin{equation*}
\frac{x-5}{4}=\frac{y-7}{-4}=\frac{z-3}{-5} \text { and } \frac{x-8}{4}=\frac{y-4}{-4}=\frac{z-5}{4} \tag{5}
\end{equation*}
$$

Q15. A tailor needs at lease 40 large buttons and 60 small buttons. In the market, buttions are available in two boxes or cards. A box contains 6 large and 2 small buttons and a card contains 2 large and 4 small buttons. If the cost of a box is $\$ 3$ and cost of a card is $\$ 2$, find how many boxes and cards should be purchased so as to minimize the expenditure.
Q16. Find the scalar component of projection of the vector
$\overrightarrow{\mathrm{a}}=2 \hat{\imath}+3 \hat{\jmath}+5 \hat{k}$ on the vector $\overrightarrow{\mathrm{b}}=2 \hat{\imath}-2 \hat{\jmath}-\hat{k}$

