ASSIGNMENT BOOKLET
 Bachelor's Degree Programme (B.Sc.)

MATHEMATICAL METHODS IN PHYSICS-III

Valid from January 1, 2024 to December 31, 2024

It is compulsory to submit the Assignment before filling in the Term-End Examination Form.

Please Note

- You can take electives (56 or 64 credits) from a minimum of TWO and a maximum of FOUR science disciplines, viz. Physics, Chemistry, Life Sciences and Mathematics.
- You can opt for elective courses worth a MINIMUM OF 8 CREDITS and a MAXIMUM OF 48 CREDITS from any of these four disciplines.
- At least 25% of the total credits that you register for in the elective courses from Life Sciences, Chemistry and Physics disciplines must be from the laboratory courses. For example, if you opt for a total of 64 credits of electives in these 3 disciplines, at least 16 credits out of those 64 credits should be from lab courses.
- You cannot appear in the Term-End Examination of any course without registering for the course. Otherwise, your result will not be declared and the responsibility will be yours.

School of Sciences
Indira Gandhi National Open University
Maidan Garhi, New Delhi-110068

Dear Student,
We hope you are familiar with the system of evaluation to be followed for the Bachelor's Degree Programme. At this stage you may probably like to re-read the section on assignments in the Programme Guide for Elective Courses that the University sent you after your enrolment. A weightage of 30 per cent, as you are aware, has been earmarked for continuous evaluation which would consist of one tutor-marked assignment for this course.

Instructions for Formating Your Assignments

Before attempting the assignment please read the following instructions carefully.

1) On top of the first page of your TMA answer sheet, please write the details exactly in the following format:
\qquad
NAME \qquad
ADDRESS \qquad
\qquad

COURSE CODE :
COURSE TITLE
ASSIGNMENT NO.
STUDY CENTRE
DATE : \qquad

PLEASE FOLLOW THE ABOVE FORMAT STRICTLY TO FACILITATE EVALUATION AND TO AVOID DELAY.

2) Use only foolscap size writing paper (but not of very thin variety) for writing your answers.
3) Leave 4 cm margin on the left, top and bottom of your answer sheet.
4) Your answers should be precise and in your own words. Do not copy answers from study material.
5) While solving problems, clearly indicate the question number along with the part being solved. Write units at each step of your calculations as done in the text because marks will be deducted for such mistakes. Take care of significant digits in your work. Recheck your work before submitting it.
6) This assignment will remain valid from January 1, 2024 to December 31, 2024. However, you are advised to submit it within $\mathbf{1 2}$ weeks of receiving this booklet to accomplish its purpose as a teaching-tool.

We strongly feel that you should retain a copy of your assignment response to avoid any unforeseen situation and append, if possible, a photocopy of this booklet with your response.

We wish you good luck.

Tutor Marked Assignment MATHEMATICAL METHODS IN PHYSICS-III

Note: Attempt all questions. Symbols have their usual meanings. The marks for each question are indicated against it.

1. a) Obtain the values of λ for which the matrix:

$$
M=\left[\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \tag{5}\\
\sin \phi & \cos \phi & 0 \\
0 & 0 & \lambda
\end{array}\right]
$$

will be orthogonal.
b) Obtain eigenvalues and eigenvectors of the matrix

$$
P=\left[\begin{array}{ccc}
2 & -2 & 0 \tag{10}\\
-2 & 1 & -2 \\
0 & -2 & 0
\end{array}\right]
$$

c) Show that velocity and acceleration are contravariant vectors.
d) Show that the set of all matrices of order $m \times n$ is a group under addition of matrices. Is this group abelian?
2. a) Evaluate the integral $\int_{0}^{2 \pi} \frac{\sin ^{2} \theta \mathrm{~d} \theta}{5-4 \cos \theta}$.
b) Prove that $u=x^{2}-y^{2}$ and $v=\frac{y}{x^{2}+y^{2}}$ are harmonic functions of (x, y).
c) Obtain the Taylor series expansion of $f(z)=\frac{1}{\mathrm{z}^{2}+4}$ about $z=-i$.
3. a) Obtain the Fourier transform of the following functions:
i) $f(x)=\left\{\begin{array}{lcc}0, & \text { for } & -\infty<x<-a / 2 \\ 1, & \text { for } & -a / 2<x<a / 2 \\ 0, & \text { for } & a / 2<x<\infty\end{array}\right.$
ii) $f(x)=\left\{\begin{array}{cc}e^{-x / a}, & x>0 \\ 0, & \text { otherwise }\end{array}\right.$
b) Obtain the Laplace transform of the function:

$$
\begin{equation*}
f(t)=\left(t^{2}+4 t+5\right) e^{4 t} \tag{5}
\end{equation*}
$$

c) Using the method of Laplace transform, solve the following initial value problem:

$$
\begin{equation*}
y^{\prime \prime}-6 y^{\prime}+5 y=0 ; \quad y(0)=1, \quad y^{\prime}(0)=-3 \tag{10}
\end{equation*}
$$

4. a) Expand the function $f(x)=x^{4}$ in a series of the form $\sum_{k=0}^{\infty} A_{k} P_{k}(x)$.
b) Using the following expression for a Bessel function of order m :

$$
J_{m}(x)=\sum_{k=0}^{\infty}(-1)^{k} \frac{1}{k!\Gamma(m+k+1)}\left(\frac{x}{2}\right)^{2 k+m}
$$

show that

$$
\begin{equation*}
J_{2}(x)=\frac{2}{x} J_{1}(x)-J_{0}(x) \tag{10}
\end{equation*}
$$

c) Using Rodrigue's formula, obtain expression for $H_{3}(x)$ and show that $H_{3}^{\prime}(x)=6 H_{2}(x)$.

