MASTER OF ARTS (ECONOMICS)

Term-End Examination

June, 2011
MECE-001 : ECONOMETRIC METHODS
Time : 3 hours
Maximum Marks : 100
Note: Answer any two questions from Section A and any five questions from Section B.

SECTION - A

Answer any two questions from this section. $2 \times 20=40$

1. Consider a two - equation model system with :

$$
\begin{aligned}
& Y_{1}=a_{1}+a_{2} Y_{2}+u_{1} \\
& Y_{2}=b_{1}+b_{2} Y_{1}+b_{3} Z_{1}+b_{4} Z_{2}+u_{2}
\end{aligned}
$$

Estimate the 1st equation with a view to obtain possible bias, inconsistency and efficiency through
(a) OLS,
(b) Indirect least squares
(c) Instrumental variables using Z_{1} as an instrument.
2. A logit model is given through the equation

$$
\begin{aligned}
P_{i}=F\left(Z_{i}\right) & =F\left(\alpha+\beta X_{i}\right) \\
& =\frac{1}{1+\mathrm{e}^{-Z_{i}}}
\end{aligned}
$$

How would you estimate the model ? Explain if the model has linear parameters and whether you can apply ordinary least squares for its estimation.
3. Consider the three-equation model

$$
\begin{aligned}
& y_{1}=\beta_{13} y_{3}+\gamma_{12} x_{2}+u_{1} \\
& y_{2}=\beta_{2!} y_{1}+\beta_{23} y_{3}+\gamma_{21} x_{1}+\gamma_{22} x_{2}+u_{2} \\
& y_{3}=\gamma_{33} u_{3}+u_{3}
\end{aligned}
$$

where y_{1}, y_{2} and y_{3} are endogenous, and x_{1}, x_{2} and x_{3} are exogenous. Discuss the identification of each of the equation of the model, based on order and rank conditions.
4. (a) Explain what heteroscedasticity is and why it is a problem ? Outline two general tests that could be used to detect it.
(b) Show how you would use the generalised least squares (GLS) approach to deal with heteroscedasticity.

Answer any five questions from this section. $5 \times 12=60$
5. Consider the following two models :

$$
\begin{aligned}
& \text { I }: Y_{i}=\beta_{1}+\beta_{2} X_{2 i}+\beta_{3} X_{3 i}+\varepsilon_{i} \\
& \text { II }:\left(Y_{i}-X_{2 i}\right)=\beta_{1}^{\prime}+\beta_{2}^{\prime} X_{2 i}+\beta_{3}^{\prime} X_{3 i}+\varepsilon_{i}^{\prime}
\end{aligned}
$$

(a) Prove that the least squares residuals are identical, i. e., $\hat{\varepsilon}_{\mathrm{i}}=\hat{\varepsilon}_{i}^{\prime}$ for $i=1,2 \ldots \mathrm{~N}$
(b) Under what conditions will R^{2} associated with model II be less than R^{2} associated with model I ?
6. The model $y_{t}=\beta_{0}+\beta_{1} x_{1 t}+\beta_{2} x_{2 t}+\beta_{3} x_{3 t}+u_{t}$ was estimated by ordinary least squares from 26 observations. The results were

$$
\begin{equation*}
\hat{y}=2+3.5 x_{1 t}-7 x_{2 t}+2.0 x_{3 t} \tag{1.9}
\end{equation*}
$$

(t-ratios are given in parentheses) and $R^{2}=0.982$. The same model was estimated with restriction $\beta_{1}=\beta_{2}$. The estimates were $\hat{y}=1.5+3\left(x_{1 t}+x_{2 t}\right)-0.6 x_{3 t}$ with $R^{2}=0.876$
(a) Test the significance of the restriction $\beta_{1}=\beta_{2}$. State the assumptions under which the test is valid.
(b) Suppose that $x_{2 t}$ is dropped from the equation (i) would R^{2} rise or fall ? (ii) would $\overline{\mathrm{R}}^{2}$ rise or fall ?
7. Explain why measurement error in the explanatory variables will lead to inconsistent parameter estimate.
8. Prove that the inclusion of an irrelevant variable does not bias the estimated intercept parameter.
9. A regression equation is given by $\gamma=X \beta+\varepsilon$. If you assume that the sample variances of all the variables of the equation are same, what would be the relationship between the estimated standardized coefficients and the standard regression parameters ?
10. Given the model

$$
\log Y=\beta_{1}+\beta_{2} \log X_{2}+\beta_{3} \log X_{3}+\varepsilon,
$$

Prove that (i) the estimated regression coefficients are elasticities associated with Y and each of X 's and (ii) that these elasticities are constant.
11. Why are the errors in cross section studies unlikely to be serially correlated? Give an example in which serial correlation will be present.
12. For the regression model $Y_{t}=\alpha+\beta X_{t}+\varepsilon_{t}$ where β is known, show that the error variance of the forecast will be $\sigma^{2}\left(1+\frac{1}{T}\right)$, where σ^{2} is the population variance.

स्नातक उपाधि कार्यक्रम

सत्रांत परीक्षा

जून, 2011

एम.ई.सी.ई--001 : अर्धमित्ति विधियां

समय : 3 घण्टे
अधिकतम अंक : 100
नोट : भाग 'क' से किन्हीं दो प्रश्नों एवं भाग 'ख' से किन्हीं पाँच प्रश्नों के उत्तर दीजिए।
भाग - क

इस भाग से किन्हीं दो प्रश्नों के उत्तर दीजिए। $2 \times 20=40$

1. किसी द्वि-समीकरण मॉडल सिस्टम पर विचार कीजिए जहाँ :

$$
\begin{aligned}
& Y_{1}=a_{1}+a_{2} Y_{2}+u_{1} \\
& Y_{2}=b_{1}+b_{2} Y_{1}+b_{3} Z_{1}+b_{4} Z_{2}+u_{2}
\end{aligned}
$$

प्रथम समीकरण का आकलन :
(a) ओ एल एस (OIS) ।
(b) अप्रत्यक्ष न्यूनतम वर्ग।
(c) साधन (Instrument) के रूप में Z_{1} के प्रयोग से साधनभूत चरों, के माध्यम से संभावित बागस (bias), असंगतता और दक्षता की प्राप्ति करने के उद्देश्य से कीजिए।
P.T.O.
2. लॉजिट (logit) मॉडल को दर्शाने वाला समीकरण है :

$$
\begin{aligned}
P_{i}=F\left(Z_{i}\right) & =F\left(\alpha+\beta X_{i}\right) \\
& =\frac{1}{1+\mathrm{e}^{-Z_{i}}}
\end{aligned}
$$

आप मॉडल को कैसे आकलित करेंगे ? स्पष्ट कीजिए यदि मॉडल के रैखिक प्राचल हैं और आप इसके आकलन के लिए क्या साधारण न्यूनतम वर्ग को लागू कर सकते हैं।
3. त्रि-समीकरण मॉडल पर विचार कीजिए :

$$
\begin{aligned}
& y_{1}=\beta_{13} y_{3}+\gamma_{12} x_{2}+u_{1} \\
& y_{2}=\beta_{21} y_{1}+\beta_{23} y_{3}+\gamma_{21} x_{1}+\gamma_{22} x_{2}+u_{2} \\
& y_{3}=\gamma_{33} u_{3}+u_{3}
\end{aligned}
$$

जहाँ y_{1}, y_{2} और y_{3} अंतर्जात और x_{1}, x_{2} और x_{3} बहिर्जात है। क्रम एवं कोटि संबंधी शर्तों के आधार पर मॉडल के प्रत्येक समीकरण की पहचान की चर्चा कीजिए।
4. (a) विपमविसारिता क्या है? स्पष्ट कोजिए और यह एक समस्या क्यों है ? दो सामान्य परीक्षणों को रेखांकित कीजिए, जिनका प्रयोग इनकी पहचान करने में किया जा सकता है।
(b) विषमविसारिता से निपटने में आप व्यापीकृत न्यूनतम वर्ग (GLS) उपागम का प्रयोग कैसे करेंगे ? दर्शाइए।

इस भाग से किन्हीं पाँच प्रश्नों के उत्तर दीजिए।
5. निम्नलिखित दो मॉडलों पर विचार कीजिए :

$$
\begin{aligned}
& \text { I: } Y_{i}=\beta_{1}+\beta_{2} X_{2 i}+\beta_{3} X_{3 i}+\varepsilon_{i} \\
& \text { II }:\left(Y_{i}-X_{2 i}\right)=\beta_{1}^{\prime}+\beta_{2}^{\prime} X_{2 i}+\beta_{3}^{\prime} X_{3 i}+\varepsilon_{i}^{\prime}
\end{aligned}
$$

(a) सिद्ध कीजिए कि न्यूनतम वर्ग अर्वशिष्ट एकसमान हैं, अर्थात् :

$$
\hat{\varepsilon}_{i}=\hat{\varepsilon}_{\mathrm{i}}^{\prime} i=1,2 \ldots \mathrm{~N} \text { हेतु }
$$

(b) किन दशाओं के अंतर्गत मॉडल II से संबंद्ध R^{2} मॉडल I से संबद्ध R^{2} से निम्न होगा ?
6. मॉडल $y_{t}=\beta_{0}+\beta_{1} x_{1 t}+\beta_{2} x_{2 t}+\beta_{3} x_{3 t}+u_{t}$ को 26 प्रेक्षणों से सामान्य न्यूनतम वर्गों से आकलित किया गया। प्राप्त परिणाम इस प्रकार थें :

$$
\begin{equation*}
\hat{y}=2+3.5 x_{1 t}-7 x_{2 t}+2.0 x_{31} \tag{1.9}
\end{equation*}
$$

(t - अनुपात, कोष्ठकों में दिए गए हैं) और $\mathrm{R}^{2}=0.982$ समान मॉडल को प्रतिबंध $\beta_{1}=\beta_{2}$ के साथ आकलित किया गया था। आकलन थे :

$$
\begin{equation*}
\hat{y}=1.5+3\left(x_{1 \mathrm{t}}+x_{2 \mathrm{t}}\right)-0.6 x_{3 \mathrm{t}} \text { जहाँ } \mathrm{R}^{2}=0.876 \tag{2.7}
\end{equation*}
$$

(a) प्रतिबंध $\beta_{1}=\beta_{2}$ की सार्थकता का परीक्षण कीजिए। उन अवधारणाओं को व्यक्त कीजिए जिनके अंतर्गत परीक्षण वैध है।
(b) मान लीजिए कि $x_{2 t}$ को समीकरण से हटा दिया जाता है :
(i) क्या R^{2} बढ़ेगा या घटेगा ?
(ii) क्या $\overline{\mathrm{R}}^{2}$ बढ़ेगा या घटेगा ?
7. स्पष्ट कीजिए कि क्यों कारण चरों में माप (measurement) संबंधी त्रुटियों से असंगत प्राचल्न आकलन की प्राप्ति होगी ?
8. सिद्ध कीजिए कि अप्रासंगिक चर के समावेशन से आकलित अंत:खंड (intercept) प्राचल बायस (bias) नहीं होता।
9. एक समाश्रथण समीकरण इस प्रकार है : $Y=X \beta+\varepsilon$, यदि आप यह मान ले कि समीकरण के सभी चरों के प्रतिदर्श प्रसरण समान हैं, तो आकलित मानकीकृत गुणांकों एवं मानक समाश्रयण प्राचलों के बीच का संबंध क्या होगा ?
10. दिया गया मॉडल है :

$$
\log \gamma=\beta_{1}+\beta_{2} \log X_{2}+\beta_{3} \log X_{3}+\varepsilon,
$$

सिद्ध कीजिए कि :
(i) आकलित समाश्र्यण गुणांक Y पर प्रत्येक X का लोच हैं और
(ii) ये लोच स्थिर हैं।
11. प्रतिनिध्यात्मक अध्ययन (cross section studies) में त्रुटियाँ मुख्यतया क्रमबद्ध आधार पर सहसंबंद्ध क्यों नहीं होती हैं ? कोई ऐसा उदाहरण दीजिए जिसमें क्रम सहसंबंध-विद्यमान होगा।
12. समाश्रयण मॉडल : $\gamma_{t}=\alpha+\beta X_{t}+\varepsilon_{t}$ के लिए, जहाँ β ज्ञात है, दर्शाइए कि पूवांनुमान का त्रुरि प्रसरण $\sigma^{2}\left(1+\frac{1}{\mathrm{~T}}\right)$ होगा, जहाँ σ^{2} समष्टि प्रसरण है।

