MECE-001

MASTER OF ARTS (ECONOMICS)

Term-End Examination

June, 2011

MECE-001 : ECONOMETRIC METHODS

Time : 3 hours

00697

Maximum Marks : 100

Note : Answer any two questions from Section A and any five questions from Section B.

SECTION - A

Answer any two questions from this section. 2x20=40

1. Consider a two - equation model system with :

 $Y_1 = a_1 + a_2 Y_2 + u_1$

 $Y_2 = b_1 + b_2 Y_1 + b_3 Z_1 + b_4 Z_2 + u_2$

Estimate the 1st equation with a view to obtain possible bias, inconsistency and efficiency through

- (a) OLS,
- (b) Indirect least squares
- (c) Instrumental variables using Z_1 as an instrument.

1

2. A logit model is given through the equation

$$P_i = F(Z_i) = F(\alpha + \beta X_i)$$
$$= \frac{1}{1 + e^{-Z_i}}$$

How would you estimate the model ? Explain if the model has linear parameters and whether you can apply ordinary least squares for its estimation.

3. Consider the three-equation model

$$y_1 = \beta_{13}y_3 + \gamma_{12}x_2 + u_1$$

$$y_2 = \beta_{21}y_1 + \beta_{23}y_3 + \gamma_{21}x_1 + \gamma_{22}x_2 + u_2$$

$$y_3 = \gamma_{33}u_3 + u_3$$

where y_1 , y_2 and y_3 are endogenous, and x_1 , x_2 and x_3 are exogenous. Discuss the identification of each of the equation of the model, based on order and rank conditions.

- 4. (a) Explain what heteroscedasticity is and why it is a problem ? Outline two general tests that could be used to detect it.
 - (b) Show how you would use the generalised least squares (GLS) approach to deal with heteroscedasticity.

SECTION - B

Answer any five questions from this section. 5x12=60

- 5. Consider the following two models :
 - I : $Y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + \varepsilon_i$ II : $(Y_i - X_{2i}) = \beta'_1 + \beta'_2 X_{2i} + \beta'_3 X_{3i} + \varepsilon'_i$
 - (a) Prove that the least squares residuals are identical, i. e., $\hat{\epsilon}_i = \hat{\epsilon}_i^{\dagger}$ for i = 1, 2..., N
 - (b) Under what conditions will R² associated with model II be less than R² associated with model 1 ?
- 6. The model $y_t = \beta_0 + \beta_1 x_{1t} + \beta_2 x_{2t} + \beta_3 x_{3t} + u_t$ was estimated by ordinary least squares from 26 observations. The results were

$$\hat{y} = 2 + 3.5 x_{11} - 7 x_{21} + 2.0 x_{31}$$

(1.9) (2.2) (1.5)

(t-ratios are given in parentheses) and $R^2 = 0.982$. The same model was estimated with restriction $\beta_1 = \beta_2$. The estimates were $\hat{y} = 1.5 + 3 \ (x_{1t} + x_{2t}) - 0.6 \ x_{3t}$ with $R^2 = 0.876$

(2.7) (2.4)

- (a) Test the significance of the restriction $\beta_1 = \beta_2$. State the assumptions under which the test is valid.
- (b) Suppose that x_{2t} is dropped from the equation (i) would R² rise or fall ? (ii) would

 \overline{R}^2 rise or fall ?

MECE-001

P.T.O.

- 7. Explain why measurement error in the explanatory variables will lead to inconsistent parameter estimate.
- 8. Prove that the inclusion of an irrelevant variable does not bias the estimated intercept parameter.
- 9. A regression equation is given by $Y = X\beta + \varepsilon$. If you assume that the sample variances of all the variables of the equation are same, what would be the relationship between the estimated standardized coefficients and the standard regression parameters ?
- **10.** Given the model

log $Y = \beta_1 + \beta_2 \log X_2 + \beta_3 \log X_3 + \varepsilon$, Prove that (i) the estimated regression coefficients are elasticities associated with *Y* and each of *X* 's and (ii) that these elasticities are constant.

- Why are the errors in cross section studies unlikely to be serially correlated ? Give an example in which serial correlation will be present.
- **12.** For the regression model $Y_t = \alpha + \beta X_t + \varepsilon_t$ where β is known, show that the error variance of the

forecast will be $\sigma^2 \left(1 + \frac{1}{T}\right)$, where σ^2 is the population variance.

एम.ई.सी.ई-001

स्नातक उपाधि कार्यक्रम सत्रांत परीक्षा

जून, 2011

एम.ई.सी.ई-001 : अर्धमित्ति विधियां

समय : 3 घण्टे अधिकतम अंक : 100 नोट : भाग 'क' से किन्हीं दो प्रश्नों एवं भाग 'ख' से किन्हीं पाँच प्रश्नों के उत्तर दीजिए।

भाग - क

इस भाग से **किन्हीं दो** प्रश्नों के उत्तर दीजिए।

1. किसी द्वि-समीकरण मॉडल सिस्टम पर विचार कीजिए जहाँ :

 $Y_1 = a_1 + a_2 Y_2 + u_1$ $Y_2 = b_1 + b_2 Y_1 + b_3 Z_1 + b_4 Z_2 + u_2$

प्रथम समीकरण का आकलन :

- (a) ओ एल एस (OLS) ।
- (b) अप्रत्यक्ष न्यूनतम वर्ग।
- (c) साधन (Instrument) के रूप में Z₁ के प्रयोग से साधनभूत चरों, के माध्यम से संभावित बायस (bias), असंगतता और दक्षता की प्राप्ति करने के उद्देश्य से कीजिए।

5

MECE-001

2x20=40

2. लॉजिट (logit) मॉडल को दर्शाने वाला समीकरण है :

$$P_i = F(Z_i) = F(\alpha + \beta X_i)$$

$$=\frac{1}{1+e^{-Z_i}}$$

आप मॉडल को कैसे आकलित करेंगे? स्पष्ट कीजिए यदि मॉडल के रैखिक प्राचल हैं और आप इसके आकलन के लिए क्या साधारण न्यूनतम वर्ग को लागू कर सकते हैं।

3. त्रि-समीकरण मॉडल पर विचार कीजिए :

$$y_{1} = \beta_{13}y_{3} + \gamma_{12}x_{2} + u_{1}$$

$$y_{2} = \beta_{21} \ y_{1} + \beta_{23}y_{3} + \gamma_{21} \ x_{1} + \gamma_{22}x_{2} + u_{2}$$

$$y_{3} = \gamma_{33}u_{3} + u_{3}$$

जहाँ y_1, y_2 और y_3 अंतर्जात और x_1, x_2 और x_3 बहिर्जात है। क्रम एवं कोटि संबंधी शर्तों के आधार पर मॉडल के प्रत्येक समीकरण की पहचान की चर्चा कीजिए।

- 4. (a) विषमविसारिता क्या है? स्पष्ट कीजिए और यह एक समस्या क्यों है? दो सामान्य परीक्षणों को रेखांकित कीजिए, जिनका प्रयोग इनकी पहचान करने में किया जा सकता है।
 - (b) विषमविसारिता से निपटने में आप व्यापीकृत न्यूनतम वर्ग (GLS) उपागम का प्रयोग कैसे करेंगे ? दर्शाइए।

भाग - ख

इस भाग से *किन्हीं पाँच* प्रश्नों के उत्तर दीजिए। 5x12=60

5. निम्नलिखित दो मॉडलों पर विचार कीजिए :

I :
$$Y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + \varepsilon_i$$

II : $(Y_i - X_{2i}) = \beta'_1 + \beta'_2 X_{2i} + \beta'_3 X_{3i} + \varepsilon'_i$

 (a) सिद्ध कीजिए कि न्यूनतम वर्ग अवशिष्ट एकसमान हैं, अर्थात :

 $\hat{\varepsilon}_i = \hat{\varepsilon}_i$ i = 1, 2..., N हेतु

- (b) किन दशाओं के अंतर्गत मॉडल II से संबंद R² मॉडल I से संबद्ध R² से निम्न होगा ?
- मॉडल y_t = β₀ + β₁ x_{1t} + β₂ x_{2t} + β₃ x_{3t} + u_t को 26 प्रेक्षणों से सामान्य न्यूनतम वर्गों से आकलित किया गया। प्राप्त परिणाम इस प्रकार थें :

 $\hat{y} = 2 + 3.5 x_{1t} - 7 x_{2t} + 2.0 x_{3t}$

(1.9) (2.2) (1.5)

(t - 3) - अनुपात, कोष्ठकों में दिए गए हैं) और $R^2 = 0.982$ समान मॉडल को प्रतिबंध $\beta_1 = \beta_2$ के साथ आकलित किया गया था। आकलन थे :

$$\hat{y} = 1.5 + 3 \ (x_{1t} + x_{2t}) - 0.6 \ x_{3t}$$
 जहाँ R² = 0.876
(2.7) (2.4)

 (a) प्रतिबंध β₁ = β₂ की सार्थकता का परीक्षण कीजिए।
 उन अवधारणाओं को व्यक्त कीजिए जिनके अंतर्गत परीक्षण वैध है।

7

MECE-001

P.T.O.

- (b) मान लीजिए कि x2t को समीकरण से हटा दिया जाता है :
 - (i) क्या R² बढ़ेगा या घटेगा ?
 - (ii) क्या \overline{R}^2 बढ़ेगा या घटेगा ?
- स्पष्ट कीजिए कि क्यों कारण चरों में माप (measurement) संबंधी त्रुटियों से असंगत प्राचल आकलन की प्राप्ति होगी ?
- सिद्ध कीजिए कि अप्रासंगिक चर के समावेशन से आकलित अंत:खंड (intercept) प्राचल बायस (bias) नहीं होता।
- 9. एक समाश्रथण समीकरण इस प्रकार है : Y = Xβ + ε, यदि आप यह मान लें कि समीकरण के सभी चरों के प्रतिदर्श प्रसरण समान हैं, तो आकलित मानकीकृत गुणांकों एवं मानक समाश्रयण प्राचलों के बीच का संबंध क्या होगा ?
- 10. दिया गया मॉडल है :

 $\log \ Y = \beta_1 + \beta_2 \ \log \ X_2 + \beta_3 \ \log \ X_3 + \varepsilon \,,$ सिद्ध कीजिए कि :

- (i) आकलित समाश्रयण गुणांक Y पर प्रत्येक X का लोच हैं और
- (ii) ये लोच स्थिर हैं।
- प्रतिनिध्यात्मक अध्ययन (cross section studies) में त्रुटियाँ मुख्यतया क्रमबद्ध आधार पर सङ्संबंद्ध क्यों नहीं होती हैं ? कोई ऐसा उदाहरण दीजिए जिसमें क्रम सहसंबंध-विद्यमान होगा।

12. समाश्रयण मॉडल :
$$Y_t = \alpha + \beta X_t + \varepsilon_t$$
 के लिए, जहाँ β ज्ञात
है, दर्शाइए कि पूर्वानुमान का त्रुटि प्रसरण $\sigma^2 \left(1 + \frac{1}{T}\right)$ होगा,
जहाँ σ^2 समष्टि प्रसरण है।