PHE- 7

BACHELOR OF SCIENCE (B.Sc.)

Term-End Examination

June, 2011
PHE-7 : ELECTRIC AND MAGNETIC PHENOMENA

Time : 2 hours
 Maximum Marks:50

Note: All questions are compulsory. Marks allotted for tach question are indicated against if. Log tahles or calculators may be used. Symbols hare their usual meaning. Values of physical constants are given at the end.

1. Attempt any five parts: $5 \times 3=15$
(a) Point charges are placed at the vertices of a square of side a as shown. Calculate the magnitude of ratio $\left|\frac{q}{Q}\right|$ so that net force on each Q is zero.

(b) Calculate the effective capacitance of three capacitors arranged in such a way that two of them, C_{1} and C_{2}, are in series and the third C_{3} is in parallel with this series combination.
(c) Two metallic plates of radius r are placed at a distance d apart and have capacitance C. If another plate of radius $r / 2$ and thickness d with dielectric constant 6 is placed between the plates, find the capacitance of the system.
(d) An electric dipole of length 2 cm is placed with its axis making an angle of 60° with a uniform electric field of $10^{5} \mathrm{NC}^{-1}$. If it experiences a torque of $8 \sqrt{3} \mathrm{~N} . \mathrm{m}$, calculate the magnitude of charge on the dipole.
(e) Explain the principle of superposition as applicable to electric force.
(f) A metal ring placed on top of a vertically placed solenoid jumps when current through the solenoid is switched on. Explain why?
(g) Define electric dipole and obtain the value of electric field at a point \mathbf{P} on the perpendicular bisector of the dipole axis.
2. Attempt any five parts :
(a) A copper wire has a square cross-section of 6 mm on a side. The wire is 10 m long and carries a current of 3.6 A . The number density of free electrons is $8.5 \times 10^{28} \mathrm{~m}^{-3}$. Find the magnitude of (i) current density in the wire and (ii) electric field in the wire. How much time is required by an electron to travel the length of the wire ?
$\left(\rho\right.$-electrical resistivity $=1.72 \times 10^{-8} \Omega \mathrm{~m}$)
(b) A beam of electron passes undeflected through two mutually perpendicular electric and magnetic tields. The electric field is cut off and the same magnetic field is maintained; the electrons move in the magnetic field in a circular path of radius 1.14 cm . Determine the ratio of the electronic charge to mass if $F=81 \mathrm{Vm}^{-1}$ and $B=2 \times 10^{-3} \mathrm{~T}$.
(c) (i) State Biot-Savart's Law.
(ii) A current of 5 A is passed through a 4 straight wire of length 6 cm . Calculate the magnetic induction at a point P located on the perpendicular bisector of the wire such that its distance is 5 cm from each end of the wire.
(d) The amplitude of electric field in an electromagnetic wave is $E_{0}=120 \mathrm{Vm}^{-1}$ and its frequency is $\nu=50 \mathrm{MHz}$. Determine B_{0} ω, k and λ. Also write the expression for \vec{E} and \vec{B}. If the wave is travelling in the $+x$ direction and \vec{E} is along the $+y$ axis.
(e) (i) What is the dielectric constant of the medium in which the plane electromagnetic wave given by $E=100 \cos \left(6 \times 10^{8} t+4 x\right) \mathrm{Vm}^{-1}$ propagates?
(ii) Calculate the average energy density of an electromagnetic wave given by $E=\left(50 \mathrm{Vm}^{-1}\right) \sin (\omega t-k x)$.
(f) Discuss the behaviour of a dielectric in an $2+3$ electric field and explain the concept of atomic polarisability.
3. (a) State Gauss's Law for electric flux. Write it in its differential form.
(b) Obtain the expressions for electric field due to a uniformly charged sphere of radius R at the points (i) $r>R$, (ii) $r=R$ and (iii) $r<R$. How wond these expressions modify if the sphere is a contuctor?

Olk

(a) Show that the magnitude of \vec{B} falis off inversely with the distance from an infinitely long wine carrying a current I
(b) An electric genemator consists of a to turn syuare wire loop of side 50 om . The loop is turned at 50 revolutions per necoid to produce the standard 50)18 ac. How strong must the magnetic field be for the peak output voltage of the generator to be 400 V ?

Physical Constants:

$$
\begin{aligned}
& c=1.6 \times 10^{-19} \mathrm{C} \\
& m_{c}=9.1 \times 10^{-3!} \mathrm{kg} \\
& m_{p}=1.67 \times 10^{-27} \mathrm{~kg} \\
& \epsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2} \\
& \mu_{0}=4 \pi \times 10^{-7} \mathrm{TmA}^{-1} \\
& \mathrm{C}=3 \times 10^{8} \mathrm{~ms}^{-1} \\
& \overline{4 \pi \epsilon_{0}}=9.0 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2}
\end{aligned}
$$

विज्ञान स्वातक (बी.एस सी.)
 सत्रांत परीक्षा

जून, 2011

गी.एव.ई.-7 : वैद्युत और चुंबकीय परिघटनाएँ

समय :2 घण्टे अधिकतम अंक : 50 नोट : सभी प्रश्न अनिवाय हैं। प्रत्येक प्रश्न के अंक उसके सामने दिए गए हैं। आप लॉग टेबल ग्रा कैल कुलंटर का उमयोग कर सकते हैं। प्रतिकों के घणने सामाव्य जैं हैं। भौतिक नियतांकों के गान अंत में दिए गए "

1. कोई़ पांच भाग करें : $5 \times 3=15$
(a) भुजा 1 वाले एक वर्ग के शीर्पों पर बिन्दु आवेश रखे गए हैं जैसाकिक निम्न चित्र में दिखाया गया है :

अनुपात $|Q|$ का वह मान पर्रिकलित करें जिसके लिए प्रत्येक Q पर लगने वाले नेट बल का मान शुन्य हो।
(b) तीन संधारित्र C_{1}, C_{2} तथा C_{3} इस प्रकार व्यर्वस्थित हैं कि इनमें से दो, C_{1} तथा C_{2} एक दूसरे से श्रेणी में जुड़े हैं तथा तोसरा, C_{3} इस श्रेणी क्रम के साथ समान्तर में जुड़ा
हैं। इस निकाय की प्रभावी धारिता परिकलित करें।
(c) दो धात्विक प्लेंें, जिनमें से प्रत्येक की त्रिज्या r है, एक दूसरे से d दूर्री पर रखी हैं तथा इस निकाय की धारीता C है। यदि मोटाई d वाली एक प्लेट को जिसकी त्रिज्या $1 / 2$ है तथा जिसका परावैद्युतांक 6 है, इन प्लेटों के बीच रग दिया जाए तो निकाय की धारिता परिकलित करें।
(d) 2 cm लंबाई कला एक विद्युत् द्विध्रुव $10^{5} \mathrm{NC}^{-1}$ परीभाण वाले एकसमान विद्युत क्षेत्र में इस प्रकार रखा है कि इसका अक्ष, विद्युत क्षेत्र दिशा के साथ 60° का कोण बनाता है। यदि द्विध्रुव द्वारा अनुभूत बलआघूर्ण का मान $8 \sqrt{3} \mathrm{Nm}$ है तो द्विध्रुव पर स्थित आवेश परिकलित करें।
(e) विद्युत बल पर लागू होने वाले अध्यारोपण सिद्धांत को समझाएं।
(f) किसी ऊर्ध्वाधर स्थित परिनालिका के उपर एक धात्विक वलय रख्वा है। जब परिनालिका में विद्युत् धारा प्रवाहित की जाती है तो यह वलय उपर की ओर उछलता है। समझाएं कि ऐसा क्यों होता है।
(g) विद्युत् द्विध्रुव को परिभापित करें तथा इसके अक्ष के लंब-द्विभाजक पर स्थित किसी बिन्दु P पर विद्युत् क्षेत्र का मान परिकलित करें।
2. कोई पाँच भाग करें :
(a) एक तांबे के तार का अनुप्रस्थ परिच्छेद वर्गाकार है जिसकी एक भुजा की लंबाई 6 mm है। इस तार की लंबाई 10 m है तथा इसमें 3.6 A धारा प्रवाहित हो रही है। मुक्त इलेक्ट्रॉनों का संख्या घनत्व $8.5 \times 10^{28} \mathrm{~m}^{-3}$ है। इस तार में (i) धारा घनत्व तथा (ii) विद्युत क्षेत्र परिकलित करें। एक इलेक्ट्रॉन को इस तार के एक छोर से दूसरे छोर तक जाने में कितना समय लगेगा ?
$\left(\rho-\right.$ वैद्युत प्रतिरोधकता $\left.=1.72 \times 10^{-8} \Omega \mathrm{~m}\right)$.
(b) परस्पर लंबवत् विद्युत् क्षेत्र तथा चुंक्रकीय क्षेत्र से होकर एक इ्लेक्ट्रॉन किरणपुंज अविच्चलित गुजरता है। यदि विद्युत् क्षेत्र हटा लिया जाए और चुंबकीय क्षेत्र का मान पूर्ववत् रख्रा जाए तो इल्लेक्ट्रॉन 1.14 cm त्रिज्या वाले वृत्तीय पथ पर गमन करता है। इलेक्ट्रॉन के आवेश और द्रव्यमान का अनुपात पनिक्षित करें यदि $E=81 \mathrm{Vm}^{-1}$ और $B=2 \times 10^{-3} \mathrm{~T}$ है।
(c) (i) वायो-सावर्ट नियम बताएं। 1

$$
\text { (ii) } 6 \mathrm{~cm} \text { लंबे, सीभे तार में } 5 \mathrm{~A} \text { धारा प्रवाहित की }
$$ जाती है। इस तार के लंब-द्विभाजक के अनुदिश किसी बिन्दु P, जिसकी दूरी तार के प्रत्येक छोर से 5 cm है, पर चुंवकीय प्रेरण परिकलित करें।

(d) एक विद्युत- चुंबकोग तरंग के विद्युत् क्षेत्र का आयाभ, $E_{0}=120 \mathrm{Vm}^{-1}$ है तथा इसकी आवृषित, $v=50 \mathrm{MHz}$ है। इस तरंग के लिए B_{0}, ω, k तथा λ निर्धारित करें। सीथ हो, \vec{E} तथा \vec{B} के लिए व्यंजक लिख्जें यदि तरंग $+x$ दिशा में संचरण्ण करती है तथा $\vec{E},+y$ दिशा के अनुदिश है।
(e) (i) किसी माध्रम में एक समतल विद्युत चुंबकीय 3 तरंग संचरण करती है जिमका त्रंजक निम्न है : $E=100 \quad \cos \left(6 \times 10^{8} t+4 x\right) \mathrm{Vm}^{-1}$ माध्रम का परववैद्युतांक परिकालत करें।
(ii) निम्नलिखित व्यंजक द्वारा व्यक्ज विद्युत् चुंबकीय 2
तरंग का औसत ऊर्जा घनत्व परिकलित करें : $E=\left(50 \mathrm{Vm}^{-1}\right) \sin (\omega t-k x)$.
(f) विद्युत् क्षेत्र में स्थित किसी परविद्युत पदार्थ के व्ववहार

की चर्चा करें तथा पर्माण्तीय ध्रृत्रणोयता अवधारणा

 समझ़ाएं।3. (a) विद्युत अभिवाह के लिए गाउस नियम बताएं। इस $2+1$ नियम को अवकल रूप में लिखें।
(b) त्रिज्या R वाले एकसमान आवेशित गोलक के कारण $5+2$ निम्नलिखित स्थितियों पर विद्युत् क्षेत्र के लिए व्यंजक व्युत्पन्न करें :
(i) $r>R$, (ii) $r=R$ तथा (iii) $r<R$.

यह व्यंजक किस प्रकाग परिवर्तित होगा यदि गोलक एक सुचालक हो ?

अथवा

(a) सिद्ध करें कि \vec{B} का परिमाण, अनंतत: लंबी तार, जिसमें 5 धारा I प्रवाहित हो रही है, से दूरी के व्युत्क्रम के संगत कम होता हैं।
(b) किसी वैद्युत जनित्र में 10 फेरों वाला तारों का एक 5 वर्गाकार पाश है जिसकी एक भुजा की लंबाई 50 cm है। मानक 50 Hzac उत्पत्र करने के लिए इस पाश को 50 फेरे प्रति सेकेन्ड की दर से घुमाया जाता है। जनित्र के निर्गम विभव का शिखर मान 400 V होने के लिए चुंबकीय क्षेत्र का मान कितना होना चाहिए ?

भौतिक नियतांक :

$$
\begin{aligned}
& e=1.6 \times 10^{-19} \mathrm{C} \\
& m_{e}=9.1 \times 10^{-31} \mathrm{~kg} \\
& m_{p}=1.67 \times 10^{-27} \mathrm{~kg} \\
& \epsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{-2} \mathrm{~N}^{-1} \mathrm{~m}^{-2} \\
& \mu_{0}=4 \pi \times 10^{-7} \mathrm{TmA}^{-1} \\
& \mathrm{C}=3 \times 10^{8} \mathrm{~ms}^{-1} \\
& \frac{1}{4 \pi \epsilon_{0}}=9.0 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2}
\end{aligned}
$$

