BACHELOR OF SCIENCE (B.Sc.)
 Term-End Examination

June, 2011
PHYSICS

PHE-4: MATHEMATICAL METHODS IN PHYSICS-I
 Time: 11/2 hours Maximum Marks: 25

B.Sc. EXAMINATION,

PHE-4 : MATHEMATICAL METHODS IN PHYSICS-I
\&

PHE-5 : MATHEMATICAL METHODS IN PHYSICS-II

Instructions :

1.	Students registered for both PHE-4 \& PHE-5 courses
	should answer both the question papers in two separate
	answer books entering their enrolment number, course
2.	code and course title clearly on both the answer books.
	Students who have registered for PHE-4 or PHE-5
	should answer the releont question paper after entering
	ir enolment number, course code and course tifle
	the answer book.

Note: Attempt all questions. The marks for each question ure indicated against it.

1. Attempt amy three parts:
(a) Show that

$$
\begin{aligned}
(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d}) & =(\vec{a} \cdot \vec{c})(\vec{b} \cdot \vec{d}) \\
& -(\vec{a} \cdot \vec{d})(\vec{b} \cdot \vec{c})
\end{aligned}
$$

(b) A particle moves along a curve whose parametric equations are $x=\mathrm{e}^{-\mathrm{t}}, y=2 \cos$ $3 t, z=2 \sin 3 t$, where t is the time. Determine the magnitude of the velocity and acceleration at $t=0$.
(c) Given that $\vec{E}=-\vec{\nabla} \Phi$ and $\vec{\nabla} \cdot \vec{E}=\rho / \epsilon_{0}$. Determine the electric field \vec{E} and the charge distribution ρ that corresponds to the potential $\Phi=k_{0}\left(x^{2}+y^{2}+z^{2}\right)$,
(d) Express the following vector field in spherical polar coordinates.

$$
\vec{F}=\frac{k(x \hat{j}-y \hat{i})}{x^{2}+y^{2}+z^{2}}
$$

(e) Evaluate $\int_{C} \vec{F}, d \vec{r}$ from $(0,0)$ to $(1,2)$ for the field $\vec{F}=3 x y \hat{i}-y^{2} \hat{j}$, where C is the curve $y=2 x^{2}$ in the $x y$ plane.
2. State the divergence theorem. Using divergence $\mathbf{1 + 4}$ theorem evaluate $\iint_{S} \vec{F} \cdot \hat{n} d S$ where $\vec{F}=4 x z \hat{i}-y^{2} \hat{j}+y z \hat{k}$ and S is the surtace of the cube bounded by $x=0, x=1, y=0, y=1, z=0$ and $z=1$. \hat{n} is the unit vector normal to the surface S.

OR

State Stoke's theorem. Show that for a $\mathbf{1 + 4}$ conservative force field \vec{F} curl \vec{F} is zero everywhere.

3. Suppose four coins are tossed. Let X designate the number of heads which appear. Calculate $E(X)$.

OR

A box contain 4 bad and 6 good tubes. Two tubes 3 are drawn from the box at a time. One of them is tested and found to be good. What is the probability that the other one is also good?
4. Derive the expression for the mean and vanane 5 of the Poisson distribution

$$
p(x ; m)=\frac{\mathrm{c}^{-m} m^{\prime}}{x!} ; x=0,1,2, \ldots \ldots
$$

OR

 at various temperatures are given in the following table.| $T\left({ }^{\circ} \mathrm{C}\right)$ | 10 | 20 | 30 | 40 | 50 | 60 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $S\left(\right.$ dynes $\left.\mathrm{cm}^{-1}\right)$ | 74.0 | 73.0 | 71.0 | 70.0 | 68.0 | 66.0 |

Calculate the correlation coefficient for this data.

पी.एच.ई.-4

विज्ञान स्नातक (बी.एससी.)

सत्रांत परीक्षा
जून, 2011

भौतिक विज्ञान

पी.एच.ई.-4 : भौतिकी में गणितीय विधियाँ-I

बी.एससी. परीक्षा,
पी.एच.ई-4 : भौतिकी में गणितीय विधियाँ-1

एवं

पी.एच.ई-5 : भौतिकी में गणितीय विधियाँ-II
निर्देश :

1. जो छात्र पी.एच.ई.-4 और पी.एच.ई.-5 दोनों पाठ्यक्रमों के लिए पंजीकृत हैं, दोनों प्रश्नपत्रों के उत्तर अलग-अलग उत्तर पुस्तिकाओं में अपना अनुक्रमांक, पाठ्यक्रम कोड तथा पाठ्यक्रम नाम साफ-साफ लिखकर दें।
2. जो छात्र पी.एच.ई.-4 या पी.एच.ई.-5 किसी एक के लिए पंजीकृत हैं, अपने उसी प्रश्नपत्र के उत्तर, उत्तर-पुस्तिका में अपना अनुक्रमांक, पाठ्यक्रम कोड तथा पाठचक्रम नाम साफ-साफ लिखकर दें।

नोट : सभी प्रश्न करें। प्रत्येक प्रश्न के अंक उसके सामने दिए गए हैं।

1. कोई़ तीन भाग करें :
(a) सिद्ध करें कि :

$$
\begin{aligned}
(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d}) & =(\vec{a} \cdot \vec{c})(\vec{b} \cdot \vec{d}) \\
& -(\vec{a} \cdot \vec{d})(\vec{b} \cdot \vec{c})
\end{aligned}
$$

(b) एक कण एक वक्र के अन्नुदिश गति करता है जिसकी प्राचलिक समीकरणें $x=\mathrm{e}^{-t}, y=2 \cos 3 t$, $z=2 \sin 3 t$, हैं, जहाँ t समय है। $t=0$ पर वेग और त्वरण का परिमाण परिकलित करें।
(c) दिया है कि $\vec{E}=-\vec{\nabla}$ Ф और $\vec{\nabla} \cdot \vec{E}=\rho / \epsilon_{\mathrm{o}}$

निम्नलिखित विभव के संगत विद्युत क्षेत्र \vec{E} और आवेश वितरण ρ ज्ञात कीजिए।

$$
\Phi=k_{0}\left(x^{2}+y^{2}+z^{2}\right),
$$

(d) निम्नलिखित सदिश क्षेत्र को गोलीय ध्रुवीय निर्देशांकों में व्यक्त करें :

$$
\vec{F}=\frac{k(x \hat{j}-y \hat{i})}{x^{2}+y^{2}+z^{2}}
$$

(e) $\vec{F}=3 x y \hat{i}-y^{2} \hat{j}$ के लिए $(0,0)$ से $(1,2)$ तक

$$
\begin{aligned}
& \int_{C} \vec{F}, d \vec{r} \text { का परिकलन करें, जहाँ } C x y \text { तल में } \\
& y=2 x^{2} \text { से निरूपपित वक्र हैं। }
\end{aligned}
$$

2. डाईवर्जेन्स प्रमेय का कथन दें। डाईवर्जेन्स प्रमेय का प्रयोग $1+4$ करके $\vec{\Gamma}=4 x z \hat{i}-y^{2} \hat{j}+y=\hat{k}$ के लिए $\iint_{S} \vec{F} \cdot \hat{n} d S$ का परिकलन करें जहाँ S एक घन का पृष्ठ है जो कि $x=0, x=1, y=0, y=1, z=0$ और $z=1$ से बद्ध है। \hat{n}, पृष्ठ S के लंबवृत एक्क सदिश है।

या

स्टोक्स प्रमेय का कथन दें। सिद्ध करें कि संरक्षी बल क्षेत्र $1+4$ \vec{F} का कर्ल \vec{F} सर्वत्र शून्य होता है।
3. मान लें कि चार सिक्के उछाले जाते हैं, और मान लें X चित्त 3 पड़ने की संख्या है। $E(X)$ परिकलित करें।

या
एक बॉक्स में 4 खराब्र और 6 ठीक ट्यूब हैं। एक साथ ही 3 बाक्स में से दो ट्यूब बाहर निकाली जाती हैं। परीक्षण किए जाने पर उन दोनों में से एक ठीक पाई जाती है। दूसरी ट्यूब के भी ठोक होने की क्या प्रायिकता होगी ?
4. प्वासों बंटन $f(x ; m)=\frac{\mathrm{e}^{-m} m^{x}}{x!} ; x=0,1,2, \ldots \ldots$. के 5 लिए माध्य और प्रसरण का व्यंजक व्युत्पन्न करें।

या

विभिन्न तापमानों पर जल के पृष्ठ तनाव S के माप निम्नलिखित

सारणी में दिए गए हैं।

$T\left({ }^{\circ} \mathrm{C}\right)$	10	20	30	40	50	60
$S\left(\right.$ dynes $\left.\mathrm{cm}^{-1}\right)$	74.0	73.0	71.0	70.0	68.0	66.0

इन आंकड़ों के लिए सहसंबंध गुणांक परिकलित करें।

