# BACHELOR OF SCIENCE (B.Sc.) 

## Term-End Examination

June, 2011

## PHYSICS

## PHE-1 : ELEMENTARY MECHANICS <br> \& <br> PHE-2 : OSCILLATIONS \& WAVES

## Instructions :

(i) Students registered for both PHE-1 \& PHE-2 courses should answer both the question papers in two separate answer books entering their enrolment number, course code and course title clearly on both the answer books.
(ii) Students who have registered for PHE-1 or PHE-2 should answer the relevant question paper after entering their enrolment number, course code and course title on the answer book.

## PHYSICS

PHE-1 : ELEMENTARY MECHANICS
Timu: 1\% hours Maximum Marks : 25

Note: Attempt all questions. The marks for ench question are indicated against it. Symbols thate their usum meanings.

Attempt any five parts:
$3 \times 5=15$

1. (a) The position vectors of three points $A, B$ and $\stackrel{C}{ }$ are given by

$$
\begin{aligned}
& \vec{r}_{A}=2 \hat{i}+3 \hat{j}+5 \hat{k} \\
& \vec{r}_{B}=2 \hat{i}+7 \hat{j}+5 \hat{k} \\
& \vec{r}_{C}=6 \hat{i}+7 \hat{j}+5 \hat{k}
\end{aligned}
$$

Find the angle between the vectors $\vec{r}_{A B}$ and $\rightarrow$ ${ }^{\prime} B C$.
(b) A particle is moving along a curve such that $y=a \sin \omega t$ and $y=a \cos \omega t$. Write down its position vector. Determine the velocity and acceleration of the particle. Show that its acceleration is drected opposite to its position vector.
(a) A bullet of mass 5 g leaves the barrel of a gun with a speed of $100 \mathrm{~ms}^{-1}$. Find the werage force exerted by the spring in the ath on the bulfe asuming that the bullet is n contact wite the aprine for $0^{-3}$ a.
(d) Two identical balls moving with initial velocities $v_{1}=2 \mathrm{~ms}^{-1} \hat{i}$ and $v_{2}=-4 \mathrm{~ms}^{-1} \hat{i}$ collide head-on in an elastic collision. Calculate the final velocity of each ball.
(e) Derive an expression for the velocity of escape of an object from the gravitational field of the earth.
(f) A mass $m$ hangs from a string in a car which is moving with an acceleration of $2 \mathrm{~ms}^{-}$? Draw the force diagram of the mass in the car's frame. Calculate the angle that the string makes with the vertical.
(g) An arrow of mass 50 g moving with a velocity of $100 \mathrm{~ms}^{-1}$ strikes a piece of wood and gets embedded in it to a depth of 2.5 cm . Calculate the average force exerted by the wood piece on the arrow.
(h) Draw a graph showing the variation of gravitational potential due to a thin spherical shell of radius $R$ for points both inside and outside the shell. Comment on its nature at points inside and outside the shell.
2. Attempt any two parts :
(a) The position vector of a particle of mass $m$ moving in a curve is given by

$$
\vec{r}(t)=3 t^{2} \hat{i}+4 t \hat{j}+2 \hat{k}
$$

Calculate the particle's angular momentum, torque on it and its kinetic energy of rotation about the origin.
(b) Show that the kinetic energy of a system of $N$ particles is given by

$$
T=\frac{1}{2} M R^{2}+\frac{1}{2} \sum_{i=1}^{N} m_{i} v_{i}^{2}
$$

What does each term on the right hand side of the equation represent?
(c) Suppose that the earth condenses so that its radius becomes one - fourth of its initial value while its mass remains the same. Determine the changed period of daily rotation of the earth.

## PHYSICS

## PHE-2 : OSCILLATIONS AND WAVES

Time: 1 1/2 hours<br>Maximum Marks: 25

Note: Attempt all questions. The marks for each question are indicated against it. Log-tables or non-programmable calculators may be used. Symbols have their usual meanings.

1. Attempt any three parts:
(a) A particle executes S.H.M. of amplitude 25 cm and time period 3 s . Calculate the minimum time required for the particle to move between two points 12.5 cm on either side of the mean position.
(b) A damped vibrating system starting from rest reaches a first amplitude of 500 mm which reduces to 50 mm after 100 oscillations each of period 2.3 s . Calculate the damping constant, relaxation time, and correction for the first displacement for damping.
(c) A man is standing near a railway track. A train approaches him with a speed of $72 \mathrm{kmhr}^{-1}$. The apparent frequency of the whistle heard by the person is 680 Hz . Calculate the actual frequency of the whistle. Take the speed of sound in air as $340 \mathrm{~ms}^{-1}$.
(d) A pipe of 20 cm length is closed at one end. Which harmonic mode of the pipe is resonantly excited by a 430 Hz . source? Will this same source be in resonance with the pipe, if both ends are open ?
(speed of sound $=340 \mathrm{~ms}^{-1}$ )
(e) A progressive harmonic wave travelling in a string is given by

$$
y=10 \sin (4.0 t-0.1 x)
$$

where $y$ and $x$ are in $c m$ and time $t$ in seconds. Calculate the energy fiux of the wave if the density of string is $1.25 \times 10^{3} \mathrm{kgm}^{-3}$.
2. Attempt any two parts :
(a) Write down the equation of motion of a forced damped oscillator and show that its steady state solution is given by

$$
x(t)=\frac{F_{0} \cos (\omega t-\theta)}{\mathrm{m}\left[\left(\omega_{0}^{2}-\omega^{2}\right)+4 b^{2} \omega^{2}\right]^{1 / 2}}
$$

where symbols have their usual meaning.
(b) Consider two rectangular harmonic oscillations having frequencies in the ratio 2:1 and initial phase difference of $\pi / 2$ Write down the expressions for their instantaneous displacements and discuss the shape obtained due to their superposition. Show all mathematical steps.
(c) Derive wave equation for transverse wave on a stretched string.

## पी.एच.ई.-1/पी.एच.ई.-2

## विज्ञान स्नातक ( बी.एस सी.)

## सत्रांत परीक्षा

जून, 2011

## भौतिक विज्ञान

# पी.एच.ई-1 : प्रांरभिक यांत्रिकी <br> एवं 

पी.एच.ईई.- 2 : दोलन और तरंगे

## निर्देश :

(i) जो छात्र पी.एच.ई.-1 और पी.एच.ई.-2 दोनों पाठ्यक्रमों के लिए पंजीकृत हैं, दोनों प्रश्नपत्रों के उत्तर अलग-अलग उत्तर पुस्तिकाओं में अपना अनुक्रमांक, पाठ्यक्रम कोड तथा पाठ्क्रम नाम साफ-साफ लिखकर दें।
(ii) जो छात्र पी.एच.ई -1 या पी.एच.ई.-2 किसी एक के लिए पंजीकृत हैं, अपने उसी प्रश्नपत्र के उत्तर उत्तर-पुस्तिका में अपना अनुक्रमांक, पाठ्यक्रम कोड तथा पाठ्कम नाम साफ-साफ लिखकर दें।

## भौतिक विज्ञान

## पी.एच.ई.-1 : प्रारंभिक यांत्रिकी

समय : $11 / 2$ घण्टे
अधिकतम अंक : 25

नोट : सभी प्रश्न करें। प्रत्येक प्रश्न के अंक उसके सामने दिए गये हैं। प्रतोकों के अपने सामान्य अर्थ हैं।

1. कोई पाँच भाग करें :
$3 \times 5=15$
(a) तीन बिंदुओं $A, B$ और $C$ के स्थ्थित सदिश निम्नलिखित हैं :

$$
\begin{aligned}
& \vec{r}_{A}=2 \hat{i}+3 \hat{j}+5 \hat{k} \\
& \vec{r}_{B}=2 \hat{i}+7 \hat{j}+5 \hat{k} \\
& \vec{r}_{C}=6 \hat{i}+7 \hat{j}+5 \hat{k}
\end{aligned}
$$

सदिशों $\vec{r}_{A B}$ और $\vec{r}_{B C}$ के बीच्र का कोण ज्ञात करें।
(b) एक कग एक वक्र के अनुदिश गतिमान है जिसके लिए $x=a \sin \omega t$ और $y=a \cos \omega t$. उसका स्थिति सदिश लिग्जें। कण के त्रेग और त्वरण प्राप्त करें। सिद्ध करें कि कण का त्वरण उसक स्थिति सदिश की विपरीत दिणा में है।
(c) द्रव्यमान 5 g की एक गोली, बंदूक की नली से $100 \mathrm{~ms}^{-1}$ की चाल से निकलती है। बंदूक में स्थित कमानी द्वारा गोली पर आरोपित औसत बल ज्ञात करें। मान लें कि गोली कमानी से $10^{-3} \mathrm{~s}$ तक संपर्क में रहती है।
(d) एक जैसी दो गेंदों का जिनके प्रारंभिक वेग क्रमश: $v_{1}=2 \mathrm{~ms}^{-1} \hat{i}$ और $v_{2}=-4 \mathrm{~ms}^{-1} \hat{i}$ हैं सीधा (head-on) प्रत्यास्थ संघट्टन होता है। प्रत्येक गेंद का अंतिम वेग परिकलित करें।
(e) पृथ्वी के गुरुत्वाकर्पण क्षेत्र से किसी पिंड के पलायन वेग का व्यंजक व्युत्पत्र करें।
(f) त्वरण $2 \mathrm{~ms}^{-2}$ से गतिमान एक कार में एक डोरी से द्रव्यमान $m$ लटका है। कार के तंत्र में द्रव्यमान का बल आरेख खींचें। ऊर्ध्वाधर से डोरी का कोण ज्ञात करें।
(g) 50 g द्रव्यमान का एक तीर $100 \mathrm{~ms}^{-1}$ के वेग से लकड़ी के एक टुकड़े से टकराता है और 2.5 cm को गहराई पर उसमें धंस जाता है। तीर पर लकड़ी के टुकड़े द्वारा आरोपित औसत बल परिकलित करें।
(h) त्रिज्या $R$ वाले एक पतले गोलीय कोश के गुरुत्वीय विभव का कोश के भीतरी और बाहरी बिंदुओं पर आरेख खींचें। कोश के भीतरी और बाहरी बिंदुओं पर इसकी प्रकृति पर टिप्पणी दें।
2. कोई दो भाग करें :
(a) एक वक्र के अनुदिश गतिमान, द्रव्यमान $m$ के कण का स्थिति सदिश निम्नलिखित है :

$$
\vec{r}(t)=3 t^{2} \hat{i}+4 t \hat{j}+2 \hat{k}
$$

मूल बिंदु के प्रति कण का कोणीय संवेग, उस पर लग रहा बल-आघूर्ण और उसकी घूर्णी गतिज ऊर्जा प्राप्त करें।
(b) सिद्ध करें कि $N$ कणों के निकाय की गतिज ऊर्जा का व्यंजक निम्नलिखित है :
$T=\frac{1}{2} M R^{2}+\frac{1}{2} \sum_{i=1}^{N} m_{i} v_{i}^{2}$
समीकरण के दक्षिण पक्ष में प्रत्येक पद क्या निरूपित करता है ?
(c) मान लें कि पृथ्वी संघनित हो जाती है और उसकी त्रिज्या अपने प्रारंभिक मान को एक-चौथाई रह जाती है जबकि उसका द्रव्यमान वही रहता है। पृथ्वी का बदला हुआ दैनिक घूर्णन काल परिकलित करें।

## भौतिक विज्ञान

## पी.एच.ई.-2 : दोलन और तरंगें

समय : $11 / 2$ घण्टे
अधिकतम अंक : 25
नोट : सभी प्रश्न करें। प्रत्येक प्रश्न के अंक उसके सामने दिए गए हैं। आप लॉग सारणी अथवा कैल्कुलेटर का उपयोग कर सकते हैं। प्रतीकों के अपने सामान्य अर्थ हैं।

1. कोई तीन भाग करें :
(a) एक कण सरल आवर्त दोलन करता है जिसका आयाम 25 cm तथा आवर्त काल 3 s है। माध्य स्थान के दोनों ओर 12.5 cm दूरी पर स्थित बिन्दुओं के बीच गमन करने में कण द्वारा लिया गया न्यूनतम समय परिकलित करें।
(b) विराम अवस्था से कंपन प्रारम्भ करने वाले एक अवमंदित कंपन निकाय का प्रथम आयाम 500 mm है। 100 दोलनों के बाद आयाम का मान घटकर 50 mm हो जाता है तथा दोलनों का आवर्तकाल 2.3 s है। अवमंदन स्थिरांक, विस्त्रांति काल तथा प्रथम विस्थापन में अवमंदन के कारण संशोधन परिकलित करें।
(c) एक व्यक्ति रेलमार्ग के बगल में खड़ा है। एक रेलगाड़ी उसकी ओर $72 \mathrm{kmhr}^{-1}$ चाल से आ रही है। व्यक्ति द्वारा श्रव्य सीटी की आभासी आवृत्ति 680 Hz है। इसकी वास्तविक आवृत्ति परिकलित करें। मान लें कि वायु में ध्वनि की चाल का मान $340 \mathrm{~ms}^{-1}$ है।

PHE-1/PHE-2
P.T.O.
(d) 20 cm लंबी एक नलिका एक सिरे पर बन्द है। 430 Hz वाले एक स्रोत के द्वारा नलिका की कौन सी संनादी विधा अनुनादी रूप से उत्तेजित होगी? यदि नलिका के दोनों सिरे खुले हों तो क्या इस श्रोत और नलिका के बीच अनुनाद होगा ?
(ध्वन्व की चाल $=340 \mathrm{~ms}^{-1}$ )
(e) एक तार में संचरित प्रगामी आवर्ती तरंग को निम्नलिखित व्यंजक द्वारा निरूपित किया जाता है :

$$
y=10 \sin (4.0 t-0.1 x)
$$

जहां $y$ तथा $x \mathrm{~cm}$ में हैं तथा $t$ सैकंड में है। यदि तार का घनत्व $1.25 \times 10^{3} \mathrm{kgm}^{-3}$ है तो तरंग में ऊर्जा अभिवाह परिकलित करें।
2. कोई दो भाग करें :
(a) एक प्रणोदित अवमंदित दोलित्र के लिए गति समीकरण लिखें तथा सिद्ध करें कि इसका स्थायी अवस्था हल निम्नलिखित है :

$$
x(t)=\frac{F_{0} \cos (\omega t-\theta)}{m\left[\left(\omega_{0}^{2}-\omega^{2}\right)+4 b^{2} \omega^{2}\right]^{1 / 2}}
$$

जहां प्रतीकों के अपने सामान्य अर्थ हैं।
(b) दो समकोणिय आवर्ती दोलनों की आवृत्तियों का अनुपात $2: 1$ है तथा उनके बीच कलान्तर $\pi / 2$ है। ड़न दोलनों के लिए तान्क्ष्रणिक विस्थापन का व्यंजक लिग्रें तथा इनके अध्याऐपण के फलस्वरूप उत्द्न आकार को चर्च्च करें। इस प्रक्रम में उअयुक्त सभी गर्णितिय च्रणों को लिख्बे।
(c) एक तानित तार पर उत्पन्न अनुप्पस्थ तरंग के लिए तरंग समीकरण व्युत्पन्त करें।

