M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)
 <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">0</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">∞</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">0</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">0</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| 0 |
| :--- |
| ∞ |
| |
| 0 |
| 0 |</table-markdown></div>
 Term-End Examination
 August, 2011

MMTE-006 (P) : CRYPTOGRAPHY PRACTICALS

Time : $11 / 2$ hours
Maximum Marks : 40

Note: There are two questions in this paper totalling $\mathbf{3 0}$ marks. Answer both of them. Remaining 10 marks are for viva-voce.

1. (a) Write a C-programme that encrypts using 15 affine cipher. Use it to decrypt the following text which was encrypted using affine cipher with the key $a=5, b=8$.

> OCURI LLVAZ HLIMV APHIW LOCUR ILLMA
> AVZAZ RCCVX OCURI LLHWM RZWVH PIVSC IVXAV ZRCUC IUIVX ASCIV UOCUR ILLHW MRZOW ZRMPA OWVMS AVHWX CVSCI VXMPA OWVMU ZPCVM ZRWVZ RCIWP OCURI LLXCH CVXAE PWULI VXORI ZCJCP ZRCSA UZQIY NCOCU RJLLH WMRZA VNCIS RCULI VXWVM MPAEV XUWVH WCLXU WVUZP CCZUI VXAVZ RCRWL LUOCU RILLV CJCPU EPPCV XCPIV XCJCV WHORW SRWXA VAZHA PZRCQ AQCVZ NCLWC JCZRW UWULI VXAPI LIPMC FIPZA HWZOC PCUEN BEMIZ CXIVX UZIPJ WVMZR CVAEP CQFWP CNCYA VXZRC UCIUI PQCXI VXMEI PXCXN YZRCN PWZWU RHLCC ZOWLL SIPPY AVZRC UZPEM MLCEV ZWLWV MAXUM AAXZW QCZAC VCUOA PLXOW ZRILL WZUFA OCPIV XQWMR ZUCZU HAPZR ZAZRC LWNCP IZWAV IVXPC USECA HZRCA LX
(b) Write a C-programme that simulates a 15

LFSR. It should take an initial state vector $\left(x_{1}, x_{2}, x_{3}, \ldots \ldots . x_{\mathrm{k}}\right)$ and the co-efficients $\mathrm{a}_{0}, \mathrm{a}_{1}, \ldots \ldots ., \mathrm{a}_{\mathrm{k}-1}$ of a polynomial $x^{k}+a_{k-1} x^{\mathrm{k}-1}+\ldots \ldots .+\mathrm{a}_{1} x+\mathrm{a}_{0}$ and the number of terms l of the pseudo random bit sequence as input and output $/$ terms of the Pseudo-Random Bit sequence. Use your programme to generate 100 terms of the pseudo random bit sequence, given the polynomial $x^{7}+x^{6}+x^{5}+x^{4}+1 \in \mathbb{Z}_{2}[\mathrm{x}]$ and the state vector $(0,0,1,1,0,1,1)$.

