M.Sc. (MATHEMATICS WITH APPLICATIONS

IN COMPUTER SCIENCE)

M.Sc. (MACS)

Term-End Examination
June, 2011
MMTE-007: SOFT COMPUTING AND ITS
APPLICATIONS
Time : 2 hours
Maximum Marks : 50
Note: Attempt any four questions from Q. No. 1 to Q. No. 6. Q. No. 7 is compulsory.

1. (a) Consider two universe of discourse 6 described by.
$x=\{1,2,3,4\}$ and $y=\{1,2,3,4,5,6\}$
Let two fuzzy sets A and B be given by :
$A=\frac{0.8}{2}+\frac{1}{3}+\frac{0.3}{4}$ and
$B=\frac{0.4}{2}+\frac{1}{3}+\frac{0.6}{4}+\frac{0.2}{5}$, then find a
fuzzy relation R corresponding to :
If A then B.
(b) Define any two neural memory models. 4 Also, give one example of each.
2. (a) Draw a figure of a single layer perception

6 where, unit 1 receives inputs from units 2 and 3 . Consider connection weights $w_{12}=2$ and $w_{13}=-3$; inputs $\mathrm{I}_{2}=0.5$ and $I_{3}=0.5$; thresshold $\theta_{1}=1$; and learning rate $\eta=0.3$. Calculate the output O_{1} for the desired output $\mathrm{T}_{1}=1$. Also compute the modified weights.
(b) Define the following terms for the genetic algorithms : giving an example of each.
(i) Population.
(ii) Search space.
(iii) Chromosome.
(iv) Dominant Allele Set.
3. (a) Let two universe of discourse x_{1} and x_{2} be 5 defined as.

$$
x_{1}=x_{2}=\{1,2, \ldots .30\},
$$

Let two fuzzy sets be defined as
"Approximately $3 "=\frac{0.5}{1}+\frac{1}{2}+\frac{0.8}{3}$ and
"Approximately 7 " $=\frac{0.6}{3}+\frac{0.8}{4}+\frac{1}{5}$. Find the fuzzy set for "Approximately 21".
(b) Consider the QA technique for the following travelling salesman problem involving 9 cities with parent chromosomes as below:

Parent 1	F	I	G	E	D	C	A	H	B
Parent 2	C	B	G	I	H	F	D	E	A

Determine the children solution using order crossover $\# 3$ assuming $3^{\text {rd }}, 5^{\text {th }}$ and $7^{\text {th }}$ positions as key positions.
4. (a) Explain the perception learning rule in detail. Also interpret its geometrical representation.
(b) Consider the fuzzy sets A and B defined on the internal $x=[0,5]$ of real numbers, by the following membership functions:
$\mu_{\mathrm{A}}(x)=\frac{x}{x+1}, \mu_{\mathrm{B}}(x)=2^{-x}$.
Determine the mathematical formulae and graphs of the membership functions of A^{C} and B^{C}.
5. (a) Let a two - input neuron with $b=1.5$, $w=[2,3]$ and $x^{t}=\left[\begin{array}{ll}6 & -5\end{array}\right]$. Calculate the neuron output for the following transfer function:
(i) A linear transfer function.
(ii) Tan sigmoid transfer function.
(iii) Hard limit transfer function.
(b) Explain all the steps of fuzzy C-mean 5 algorithm with input and output.
6. (a) Explain the following operation for a 4 genetic algorithm giving an example of each.
(i) Reproduction.
(ii) Elitism.
(b) State Schema Theorem. 3
(c) Consider the ADALINE filter with two neurons in the input layer having weights $w_{11}=2, w_{12}=3$ and the input sequence is $\{\ldots .0,0,5,-4,0,0$.$\} . What is$ the filter output from 0 to 5 ?
7. Which of the following statements are true or 10 false ? Give reasons for your answer.
(a) In a single layer neural network if $\sum_{i=0}^{n} x_{i} w i<0$ then the output is 1 otherwise it is -1 .
(b) Hetero association is the phenomenon of association of an input vector with itself as the output.
(c) If $\mu_{A}(x)=0.6$ and $\mu_{B}(x)=0.8$, then $\mu_{\mathrm{A}} \cap_{\mathrm{B}}(x)=0.6$.
(d) Hopfield network is a multi-layer neural networ k.
(e) If $\alpha_{1}<\alpha_{2}$, then the subset relation is $\mathrm{A}_{\alpha_{1}} \geqslant \mathrm{~A}_{\alpha_{2}}$.

