June, 2011
MMTE-006 : CRYPTOGRAPHY
Time : 2 hours
Maximum Marks : 50
Note: Answer any five out of six questions. Calculators are not allowed.

1. (a) Define the following terms :
(i) Probabilistic algorithm.
(ii) Yes-biased Monte Carlo algorithm.
(iii) Las-Vegas algorithm.
(iv) A sub-exponential time algorithm.
(b) State the different modes of operation of

4 block ciphers. Explain the encryption and decryption procedures in ECB an CBC modes of operation.
2. (a) Explain, with diagram, the 5 Matyas-Meyer-Oseas method and Miyaguchi Preneel method for constructing compression function from a block cipher.
(b) Let $n=17.23=391$. Is 15 a valid encryption exponent for an RSA crypto system with n as the modulus? If yes, find the decryption exponent. If no, choose a valid encryption exponent of your own and find the decryption exponent.
(c) Encrypt the text MEET AT NOON using affine cipher with key $(5,2)$.
3. (a) For the initial segment of bits 01100100 of 5 sequence of period 15 , find the recurrences that generates it ?
(b) If $f(x)=x^{3}+x^{2}+2 x+2$ and
$g(x)=x^{3}+5 x^{2}+10 x+6$ are polynomials in $Q(x)$, use the extended euclidean algorithm to find $P(x)$ and $q(x)$ in $Q(x)$ such that $P(x) f(x)+q(x) g(x)=h(x)$ where $h(x)$ is the gcd of $f(x)$ and $g(x)$.
4. (a) Explain the construction of the S-box in the AES algorithm.
(b) Explain the principles of confusion and diffusion used in design of ciphers.
(c) (i) The following cipher text was 4 encrypted using a simple columnar transformation cipher with 7 columns:
ROAT EHRO TETN UAEC RDRE NQSX TUAY Decrypt the text.
(ii) Is simple columnar transposition a transposition cipher or a substitution cipher? Justify your answer.
5. (a) Illustrate the algorithm for multiplication in finite fields using the elements $x^{2}+x+1+[f(x)]$ and $x^{2}+x+2+[f(x)]$ in the finite field $\frac{\mathbb{Z}_{3}[x]}{[f(x)]}$ where $f(x)$ is the polynomial $x^{3}+2 x^{2}+1 \in \mathbb{Z}_{3}[x]$.
(b) Explain the Runs test for random sequences. 5 Apply test for the following sequence :

```
1110100001011010111000001 1110001011100000111011100
0100100100101110110000011 0100110011000101001111011
0100100011110011000110001 1100100000101001100100100
0011011100
```

You may use the following values:
$\chi^{2}{ }_{0.05,3}=7.81473, \chi^{2}{ }_{0.05,4}=9.48773$,
$\chi^{2}{ }_{0.05,5}=11.0705$
6. (a) Check whether the number 353 is a strong 4 pseudo prime the base 2.
(b) Check whether the polynomial $x^{2}+x-1$ is 3 irreducible over $Z / 3[x]$. If it is irreducible, check whether it is Primitive.
(c) Explain the Diffie-Hellman key exhange 3
protocol.

