M.Sc. MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE (MACS)

Term-End Examination

June, 2011

MMTE-005 : CODING THEORY

Time : 2 hours

00613

Maximum Marks : 50

Note: Do any five questions from questions **1** to **6**. Use of calculators not allowed.

1.	(a)	Consider the [7, 4] binary code with the	4
		following generator matrix :	
		$\begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$	
		0 1 0 0 1 0 1	
		$\begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$	
		(i) Write down the parity check matrix.	
		(ii) Find four information sets in the above	
		code.	
		(iii) Find one set of 4 co-ordinates that do	
		not form an information set.	
	(b)	(i) Find the dimension and minimum	6
		weight of the Reed-Muller code	
		R(2, 4).	
		(ii) Find the generator matrix of the	
		Reed - Muller code R(3, 4).	

MMTE-005

P.T.O.

2. (a) (i) Show that the polynomial 5
$$f(x) = x^3 + x^2 + 1$$
 is irreducible in $F_2[x]$.

(ii) Let
$$\alpha = x + (f(x)) \in \frac{F_2[x]}{(f(x))}$$
.

Write every element of $\frac{F_2[x]}{(f(x))}$ as a

power of α .

- (iii) Write $\alpha^5 + \alpha^4 + \alpha^2 + 1$ as a power of α , where α is as in (i).
- (b) Find all the codewords of cyclic code with **5** generator matrix.

 $\begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$

Find the minimum weight of the code. How many errors can the code detect and how many can it correct ?

MMTE-005

3. (a) Construct all possible BCH codes one F_{B} of **6** length 8.

(b) Let C be any
$$\left[n, \frac{(n-1)}{2}\right]$$
 cyclic code over **4**

 F_q . Then show that C is self-orthogonal if and only if C is an even-like duadic code whose splitting is given by μ_{-1} .

4. (a) Let A_i and A_i^{1} be the number of code words **6** of weight *i* in C and C¹, respectively. Let C be a binary code generated by

 $\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$. For $0 \le i \le 6$, find A_i and A_i^{1} .

(b) Show that the Z_4 - linear codes with generator matrices

4

 $G_{1} = \begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 1 & 1 \end{bmatrix} \text{ and } G_{2} = \begin{bmatrix} 0 & 0 & 1 & 2 \\ 1 & 2 & 0 & 1 \\ 0 & 1 & 0 & 2 \end{bmatrix}$

are monomially equivalent.

3

5. (a) Find the convolutional code for the message1101. The convolutional encoder is givenbelow :

4

(b) Explain the two way APP decoding 6 algorithm of turbo codes.

- 6. (a) Let C be a [6, 3, 2] code with generator 4 matrix
 - $\begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$
 - (i) Find the generator matrix of the dual code C^1 .
 - (ii) Find the generator matrix for a [4, 2, 3] code. Obtained by shortening the generator matrix for C.
 - (b) Find all the generator polynomials for a 4[7, 4] cyclic code.
 - (c) Compute the 3 cyclotomic cosets modulo 2 8.

MMTE-005