M.Sc. MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE (MACS)

Term-End Examination

June, 2011
MMTE-005 : CODING THEORY

Time : 2 hours
Maximum Marks : 50
Note: Do any five questions from questions 1 to 6 . Use of calculators not allowed.

1. (a) Consider the [7, 4] binary code with the 4 following generator matrix :
$\left[\begin{array}{llll|lll}1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1\end{array}\right]$
(i) Write down the parity check matrix.
(ii) Find four information sets in the above code.
(iii) Find one set of 4 co-ordinates that do not form an information set.
(b) (i) Find the dimension and minimum 6 weight of the Reed-Muller code $R(2,4)$.
(ii) Find the generator matrix of the Reed - Muller code R(3, 4).
(iii) The parity check matrix of $[15,11)$ binary Hamming code is given below : $\left[\begin{array}{lllllllllllllll}0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1\end{array}\right]$
Assume that the received vector is
$(0,0,0,0,1,0,0,0,0,0,1,1,0,0,1)$.
Find the correct decoded message.
2. (a) (i) Show that the polynomial 5 $f(x)=x^{3}+x^{2}+1$ is irreducible in $F_{2}[x]$.
(ii) Let $\alpha=x+(f(x)) \in \frac{F_{2}[x]}{(f(x))}$.

Write every element of $\frac{F_{2}[x]}{(f(x))}$ as a
power of α.
(iii) Write $\alpha^{5}+\alpha^{4}+\alpha^{2}+1$ as a power of α, where α is as in (i).
(b) Find all the codewords of cyclic code with 5 generator matrix.
$\left[\begin{array}{lllllll}1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1\end{array}\right]$
Find the minimum weight of the code. How many errors can the code detect and how many can it correct ?
3. (a) Construct all possible BCH codes one F_{B} of 6 length 8 .
(b) Let C be any $\left[\mathrm{n}, \frac{(\mathrm{n}-1)}{2}\right]$ cyclic code over 4
F_{q}. Then show that C is self-orthogonal if and only if C is an even-like duadic code whose splitting is given by μ_{-1}.
4. (a) Let A_{i} and $A_{i}{ }^{1}$ be the number of code words of weight i in C and C^{1}, respectively. Let C be a binary code generated by
$\left[\begin{array}{llllll}1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1\end{array}\right]$. For $0 \leq i \leq 6$, find A_{i} and $\mathrm{A}_{i}{ }^{1}$.
(b) Show that the Z_{4} - linear codes with 4 generator matrices

$$
\begin{aligned}
& \mathrm{G}_{1}=\left[\begin{array}{llll}
1 & 0 & 0 & 3 \\
0 & 1 & 2 & 2 \\
0 & 0 & 1 & 1
\end{array}\right] \text { and } \mathrm{G}_{2}=\left[\begin{array}{llll}
0 & 0 & 1 & 2 \\
1 & 2 & 0 & 1 \\
0 & 1 & 0 & 2
\end{array}\right] \\
& \text { are monomially equivalent. }
\end{aligned}
$$

5. (a) Find the comolutional code for the message 4 1101. The corvolutional encoder is given below:

(b) Explain the two way APP decoding 6 algorithm of turbo codes.
6. (a) Let C be a $[6,3,2]$ code with generator 4 matrix

$$
\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

(i) Find the generator matrix of the dual code C^{1}.
(ii) Find the generator matrix for a $[4,2,3]$ code. Obtained by shortening the generator matrix for C.
(b) Find all the generator polynomials for a 4 $[7,4]$ cyclic code.
(c) Compute the 3 - cyclotomic cosets modulo 2 8.

