M.Sc. (Mathematics with Applications in Computer Science) (MACS)

Term-End Examination
June, 2011

MMTE-001: GRAPH THEORY
Tine: 2 hours
Maximum Marks : 50
Note: Question No. 1 is compulsory. Answer any four from the remaining six $(2-7)$. Calculators and similar devices are not allowed.

1. State, giving justifications or illustrations, whether each of the following statements is true or false.

$$
5 \times 2=10
$$

(a) The complement of a connected simple graph need not be connected.
(b) Degree sequence of any simple graph contains atleast one number appearing more than once.
(c) Every edge cut is a disconnecting set.
(d) Any simple graph with atleast 4 vertices is 4-colorable.
(e) If G is an Eulerian graph, then $R(G)>1$.
P.T.O.
2. (a) Draw the diagram of a graph G with 8 vertices and 14 edges such that $\Delta(G)-\delta(G) \leq 1$ and check whether it is Eulerian or not.
(b) Draw the dual graph of the following planar graph.

(c) Draw a cubic graph with $\kappa(G)=1$. 4
3. (a) How many edges will a planar graph with 4 8 vertices and 6 faces have? Draw a planar graph with 8 vertices and 6 faces.
(b) Construct a 3-regular simple graph having 3 no one-factor.
(c) Determine whether the graphs given below 3 are isomorphic to each other. Justify your answer.

4. (a) Find the independence number of the Petersen Graph. Justify your answer.
(b) Prove that, if u and v are the only vertices of odd in a graph G, then G contains a u, v-path.
(c) (i) State Brook's theorem.
(ii) Find the chromatic number of the graph below.

5. (a) Find the minimal spanning tree in the 4 following graph :

(b) (i) State any one necessary and any one sufficient condition to be satisfied for a graph to be Hamiltonian.
(ii) Check whether the following graph 4 is Hamiltonian or not? Give reasons for your answer. Also write down the Hamiltonian cycle if one exists.

6. (a) Let G be a acyclic graph with n vertices and 3 ($\mathrm{n}-1$) edges. Prove that G is connected.
(b) Prove or disprove : The sequence 4 $(5,5,5,4,2,1,1,1)$ is a graphic sequence.
(c) Determine $\mathrm{k}(u, v)$ for the following graph: 3

7. (a) Using Dijkstra's algorithm, find the shortest distance from vertex A to all the vertices in the following weighted graph :

(b) Prove that every tree is 2-colourable. 3
(c) Show that the petersen graph in 3 3-chromatic.

