MASTER'S IN MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE M.Sc. (MACS)
 Term-End Examination
 June, 2011

 MMT-007 : DIFFERENTIAL EQUATIONS AND

 MMT-007 : DIFFERENTIAL EQUATIONS AND NUMERICAL SOLUTIONS

 NUMERICAL SOLUTIONS}

Time : 2 hours
 Maximum Marks : 50

Note: Question No. 1 is compulsory. Do any four questions out of question nos. 2 to 7. All computations may be kept to 3 decimal places. Use of calculators is not allowed.

1. State whether the following statements are true or false. Justify your answer with the help of a short proof or a counter example.
(a) $\cos z=J_{0}(z)+2 \sum_{m=0}^{\infty}(-1)^{m} J_{2 m+1}(z)$.
(b) For $\lambda=\frac{1}{6}$, the schmidt method for solving

$$
\begin{aligned}
& \text { parabolic equation } \frac{\partial u}{\partial t}=\frac{\partial^{2} \mathrm{u}}{\partial x^{2}} \text { in a region } \\
& \mathrm{R}(\mathrm{a} \leq x \leq \mathrm{b}) \text { and } 0 \leq \mathrm{t} \leq \mathrm{T} \text { is of order } \\
& 0\left(\mathrm{k}^{2}+\mathrm{h}^{4}\right)
\end{aligned}
$$

(c) For $\mathrm{h}>0.0139$, $4^{\text {th }}$ order Runge-Kutta method used to solve the initial value problem.

$$
y^{\prime}=-200 y, y(0)=1,
$$

produces stable results.
(d) For the differential equation
$x^{2}(x-3)^{2} y^{\prime \prime}+2(x-3) y^{\prime}+(x+2) y=0$,
$x=3$ is an irregular singular point.
(e) The particular integral of the equation
$\left(\mathrm{D}^{3}-5 \mathrm{D}^{2}+7 \mathrm{D}-3\right) y=\mathrm{e}^{3 x}$ is $\frac{1}{4} x \mathrm{e}^{3 x}$.
2. (a) Using Laplace transforms, solve 5 $\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}, \quad x>0, \quad t>0 \quad$ given that
$\mathrm{u}(0, \mathrm{t})=10 \sin 2 \mathrm{t}, \mathrm{u}(x, 0)=0$
$\mathrm{u}_{\mathrm{t}}(x, 0)=0$ and $\underset{x \rightarrow \infty}{\lim _{x \rightarrow \infty}} \mathrm{u}(x, \mathrm{t})=0$.
(b) Using central difference approximation method solve the following boundary value problem $y^{\prime \prime}+y+1=0, y(0)=0, y(1)=0$, taking $\mathrm{h}=\frac{1}{2}$. Also estimate the order of the method.
3. (a) Given $\frac{\mathrm{d} y}{\mathrm{~d} x}=y-x$, where $y(0)=x$, find 4
$y(0.1)$ and $y(0.2)$, using Runge - Kutta fourth order formula with $\mathrm{h}=0.1$.
(b) Prove that ;

$$
\begin{aligned}
& \mathrm{J}_{\mathrm{n}-1}(x)=\frac{2}{x}\left[n \mathrm{~J}_{\mathrm{n}}-(\mathrm{n}+2) \mathrm{J}_{\mathrm{n}+2}+\right. \\
& (\mathrm{n}+4) \mathrm{J}_{\mathrm{n}++} \ldots \ldots \ldots \ldots \ldots
\end{aligned}
$$

(c) By definition laguerre polynomial is given by ; 3

$$
L_{n}(t)=\sum_{r=0}^{n} \frac{(-1)^{r} \underline{\underline{n}} t^{r}}{\underline{n-r}(\mid \underline{r})^{2}} .
$$

Show that $\int_{0}^{x} e^{-s t} L_{n}(t) d t=\frac{1}{s}\left(1-\frac{1}{s}\right)^{n}$.
4. (a) Solve the boundary value problem 5
$y^{\prime \prime}-3 y^{\prime}+2 y=0$
$y(0)=1, y(1)=0$
Using second order finite difference method with $\mathrm{h}=\frac{1}{3}$.
(b) Solve the equation $\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}$ subject to the
following conditions.
$\left.\begin{array}{l}u(0, t)=0 \\ u(1, t)=0\end{array}\right\}(t>0)$ and $\left.\begin{array}{c}\frac{\partial u}{\partial t}(x, 0)=0 \\ u(x, 0)=\sin ^{3} \pi x\end{array}\right\}$
for all x in $0 \leq x \leq 1$,
using the explicit formula
$u_{i}^{j+1}=-u_{i}^{j-1}+\alpha^{2}\left(u_{i-1}^{j}+u_{i+1}^{j}\right)+$
$2\left(1-\alpha^{2}\right) u_{i}^{j}$ with $h=\frac{1}{4}, k=\frac{1}{5}$ and $\alpha=\frac{k}{h}<1$.
Use the central difference approximation to the derivatives to obtain initial condition.
5. (a) Using five point difference formula solve the 5

Laplace equation $\frac{\partial^{2} u}{\partial x}+\frac{\partial^{2} u}{\partial y^{2}}=0$, where
the function u satisfies at all points within the square as shown in adjacent figure and has the boundary values as indicated. Write the Gauss - Seidal iteration scheme to solve the resulting equation.

(b) Find the power series solution of the
equation $\left(x^{2}+1\right) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+x \frac{\mathrm{~d} y}{\mathrm{~d} x}-x y=0$ in
powers of x.
6. (a) Find the Fourier Cosine transform of the that
function $k(t)=\left\{\begin{array}{cc}1-|t|, & \text { for }-1 \leq t \leq 1 \\ 0, & \text { otherwise. }\end{array}\right.$
(b) Using Laplace transforms, solve

$$
y^{\prime \prime}+y=\cos 2 \mathrm{t}
$$

given that $y(0)=1, y^{\prime}(0)=-2$,
(c) Determine the appropriate Green's function 5 by using the method of variation of parameters for the boundary value problem

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+y=\mathrm{e}^{x} \sin x \cos 2 x
$$

with $y^{\prime}(0)>=0, y(1)=0$,
7. (a) (i) Find $\mathrm{L}^{-1}\left(\frac{1}{\sqrt{2 \mathrm{~s}+3}}\right)$,
(ii) Given $L\left\{\frac{\sin t}{t}\right\}=\tan ^{-1}\left(\frac{1}{s}\right)$, find

$$
L\left\{\frac{\sin 2 t}{t}\right\}
$$

(b) Solve the problem

$$
\begin{aligned}
& \nabla^{2} \mathrm{u}=x+y, 0 \leq x \leq 1,0 \leq y \leq 1 \\
& \mathrm{u}=\frac{1}{6}\left(x^{2}+y^{2}\right) \text { on the boundary }
\end{aligned}
$$

Using the Galerkin's method with rectangular elements and one internal node $(\mathrm{h}=1 / 2)$.

