MMT-006

M.Sc. (MATHEMATICS WITH APPLICATIONS 00263 **IN COMPUTER SCIENCE)** M.Sc. (MACS) **Term-End Examination**

June, 2011

MMT-006 : FUNCTIONAL ANALYSIS

Time	: 2 ho	urs l	Maximum Marks : 50
Note	: Q qu ali	uestion number 1 is compul s uestions out of questions 2 to 7. lowed.	sory. Do any four Calculators are not
1.	Are t your coun	he following statements <i>true</i> or answer with the help of a sh ter example.	r <i>false</i> ? Justify Nort proof or a 5x2=10
	(a)	If E_1 and E_2 are open sets space X, then $E_1 + E_2$ is open	in a normed in X.
	(b)	Every continuous linear map	o is compact.
	(c)	Every infinite dimensional s discontinuous linear function	pace admits a nal.
	(d)	For any proper subspace Y space X, the interior Y° is em	´of a normed pty.
	(e)	Every normal operator on a is unitary.	normed space
ММТ	-006	1	Р.Т.О.

- **2.** (a) State closed graph theorem and use the theorem to prove open mapping theorem.
 - (b) Let X = C [0, 1] with Sup norm defined by $||f|| = \sup\{|f(x)|\}.$

5

3

 $x \in [0, 1]$

Let T be a linear map defined on X by

$$T(f) = f\left(\frac{1}{2}\right).$$

Show that T is a bounded linear map such that ||T|| = 1.

- (c) Let X = C'[0, 1] and Y = C[0, 11] and let **2** $T: X \rightarrow Y$ be the linear operator from X to Y given by T (f) = f', the derivative of f on [0, 1]. Show that T is not continuous.
- 3. (a) Let X be a finite dimensional normed space. 4Let E be a closed and bounded subset of X.Show that E is compact.
 - (b) Define Eigen Spectrum of a bounded linear 3 operator on a Banach space. Show that the eigen spectrum of the operator T on l² given
 by T (∝₁, ∝₂) = (0, ∝₁, ∝₂) is empty.
 - (c) Let $||\cdot||$ be a norm on a linear space X. **3** If *x*, *y* \in X and ||x + y|| = ||x|| + ||y||, then show that ||sx + ty|| = s||x|| + t||y|| for all $s \ge 0$, $t \ge 0$.

4. (a) State uniform boundedness principle. Use it and to show the following result.

Let X be a Banach space, Y be a normed space and $\{F_n\}$ be a sequence in B<(X, Y) such that the sequence $\{F_n(x)\}$ converges in Y for every $x \in X$. For $x \in X$, define.

$$F(x) = \lim_{n \to \infty} F_n(x)$$

Show that F is a bounded linear map from X to Y.

- (b) Let X be an inner product space with the inner product given by <, >. For $x \in X$, define the function $||.|| : X \to K$ given by $||x|| = \langle x, -x \rangle^{1/2}$, the non negative square root of $\langle x, x \rangle$. Show that $||.|| : X \to K$ defines a norm on X and $|\langle (x, y) \rangle| \le ||x|| ||y||$ for all $x, y \in X$. Also show that for all $x, y \in X$, $||x + y||^2 + ||x y||^2 = 2$ ($||x||^2 + ||y||^2$).
- 5. (a) Let X_1 be a closed subspace and X_2 be a finite dimensional subspace of a normed space X. Then show that $X_1 + X_2$ is closed in X.

(b) Let
$$X = L^2$$
 [0, 2π] and $u_n(t) = \frac{e^{int}}{\sqrt{2\pi}}$, 3

t $\epsilon \{-\pi, \pi\}$, $n\epsilon Z$ Show that the set $E = \{u_1, u_2 ...\}$ is an orthonormal set in X.

3

MMT-006

P.T.O.

4

6

3

· ... 4

(c) State Riesz Representation theorem. Let $H = \mathbb{C}^2$ and let $\int : H \to \mathbb{C}$ be defined $by = f(x_1, x_2) = x_2 - ix_1$. Find a y \in H that represents *f*.

4

5

- 6. (a) Show that normed space is separable if its 5 dual is separable. Is the converse true ? Justify your answer.
 - (b) Let H be a Hilbert space. For any subset A 5
 of H, define A[⊥]. If A ⊆ B ⊆ H, then show that :
 - (i) $B^{\perp} \subseteq A^{\perp}$
 - (ii) $A \subseteq A^{\perp \perp}$

State conditions on A so that $A^{\perp\perp} = A$.

- 7. (a) Define a normal operator on a Hilbert 5 space H. Show that an operator T on H is normal if and only if $||Tx|| = ||T \forall x|| \forall x \in H$.
 - (b) Let X be a vector space. Let $||.||^1$ and $||.||^2$ be two norms on X. When are these norms said to be equivalent? Justify your answer. Let $X = \mathbb{R}^3$. For $x = (x_1, x_2, x_3)$, Let $||x||^1 = |x_1| + |x_2| + |x_3|$

$$||x||^2 = \sqrt{|x_1|^2 + |x_2|^2 + |x_3|^2}$$

Show that $||.||^1$ and $||.||^2$ are equivalent.

MMT-006