MMT-004

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination

June, 2011

MMT-004 : REAL ANALYSIS

Time : 2 hours

0003

Maximum Marks : 50

Note : *Question no.* **1** *is compulsory.* Do *any four questions out of question nos.* **2** *to* **7***. Calculators are not allowed.*

- State, whether the following statements are True or False. Give reasons for your answer : 5x2=10
 - (a) [0, 2] is a connected set in **R** with discrete metric.
 - (b) The Sequence $\left\{ \left(\frac{1}{n}, \frac{1}{n}\right) : n \in N \right\}$ is

convergent in \mathbb{R}^2 with discrete metric.

(c) Let
$$E_n = \begin{bmatrix} 0, \frac{1}{n} \end{bmatrix}$$
, $n \in N$. Then $m (\cap E_n) = 0$.

(d) $\int_{\mathbf{R}} \chi_Q \, d\mathbf{m} = 0$, where Q is the set of rational

numbers.

(e) (0, 1, -1) is a critical point of the function f(x, y, z) = 1 + |x| + |y| + |z|

MMT-004

P.T.O.

- 2. (a) Define the outer measure m^* of a set $A \subseteq \mathbb{R}$ 3 Find the outer measure of the following sets.
 - (i) $A = [3, 4] \cup \{x : x \text{ is a solution of the} equation x² + 1 = 0\}$
 - (ii) A = { r : r is a rational number in [0, 1]}
 - (b) Check whether the function $f: \mathbb{R}^2 \to \mathbb{R}$ given 3 by $f(x, y) = 2x^4 - 3x^2y + y^2$ has local minima.
 - (c) Let (X, d) and (Y, d') be two metric spaces 4 and f be a continuous function from X to Y, and $x_0 \in X$. Show that f is continuous if and only if for every sequence $\{x_n\}$ in X converging to x_0 , $f(x_n)$ converges to $f(x_0)$.

6

4

- 3. (a) Prove that every compact set in a metric space is closed and bounded. Is the converse true ? Justify.
 - (b) Find the directional derivative of the function $f : \mathbb{R}^3 \rightarrow \mathbb{R}$ given by $f(x, y, z) = y^2 + 2xz$ in the direction V = (0, 1, 2) at the point (1, 2, -3).
- 4. (a) If E_1 and E_2 are measurable sets and 5 $E_1 \cap E_2 = \phi$, then prove that $E_1 \cup E_2$ is measurable.

MMT-004

(b) Check the differentiability of the following functions at the indicated points. Find the derivative wherever they exist.

(i) The function
$$f : \mathbf{R}^2 \to \mathbf{R}$$
 given by $f(x_1, x_2) = |x_1| + |x_2|, a = (1, 0).$

(ii) The function $f: \mathbf{R}^4 \to \mathbf{R}^2$ given by : $f(x_1, x_2, x_3, x_4) = (x_1^2 - x_2^2, x_3^2 - x_4^2)$ at a = (1, 0, 2, -1).

5. (a) Define Fourier transform of a measurable

function f with
$$\int_{-\infty}^{\infty} |f(x)| dx < \infty$$

Let $f \in L^1$ (**R**). Then prove that \hat{f} is continuous on **R**, where \hat{f} is the Fourier

transform of *f*.

- (b) Define a component in a metric space. Show 5
 that every non-empty connected subset of
 a metric space is contained in a unique
 component.
- 6. (a) State Implicit Function Theorem and verify 4 the theorem for the function $f : \mathbb{R}^2 \to \mathbb{R}$ given by $f(x, y) = y^2 - yx^2 - 2x^5$ in the neighbourhood of the point (1, -1).
 - (b) Find the Fourier Series for the function 4 $f(t) = t^2, -\pi \le t \le \pi$.

3

MMT-004

5

5

(c) Show that the set $\left\{1, \frac{1}{2}, \frac{1}{3}, \dots\right\}$ is no where 2

dense in R with standard metric.

7. (a) Show that the system
$$R: S \rightarrow S$$
 given by 3

$$g(t) = (Rf)(t) = \int_{-\infty}^{t} f(\hat{j}) d\tau$$
, is a time-

invariant system.

- (b) Obtain the second order Taylor's series 5 expansion of the function f, defined by $f(x_1, x_2) = x_1^2 x_2 + 5x_1 e x_2$ at (-1, 0).
- (c) State Monotone Convergence theorem. 2 Check whether the sequence $\{f_n\}$ where $f_n = \chi_{[n, n+1]}$ (n = 1, 2,) satisfies the conditions of Monotone Convergence theorem.