# M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) <br> M.Sc. (MACS) 

Term-End Examination
June, 2011
MMT-004 : REAL ANALYSIS
Time : 2 hours
Maximum Marks : 50
Note: Question no. 1 is compulsory. Do any four questions out of question nos. 2 to 7. Calculators are not allowed.

1. State, whether the following statements are True or False. Give reasons for your answer : $\quad 5 \times 2=10$
(a) $[0,2]$ is a connected set in $\mathbf{R}$ with discrete metric.
(b) The Sequence $\left\{\left(\frac{1}{n}, \frac{1}{n}\right): n \in N\right\}$ is convergent in $\mathbf{R}^{\mathbf{2}}$ with discrete metric.
(c) Let $E_{n}=\left[0, \frac{1}{n}\right], n \in N$. Then $m\left(\cap E_{n}\right)=0$.
(d) $\int_{\mathrm{R}} x_{\mathrm{Q}} \mathrm{dm}=0$, where Q is the set of rational numbers.
(e) $(0,1,-1)$ is a critical point of the function

$$
f(x, y, z)=1+|x|+|y|+|z|
$$

2. (a) Define the outer measure $\mathrm{m}^{*}$ of a set $\mathrm{A} \subseteq \mathbf{R}$

Find the outer measure of the following sets.
(i) $\quad \mathrm{A}=[3,4] \cup\{x: x$ is a solution of the equation $\left.x^{2}+1=0\right\}$
(ii) $\mathrm{A}=\{\mathrm{r}: \mathrm{r}$ is a rational number in $[0,1]\}$
(b) Check whether the function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ given 3 by $f(x, y)=2 x^{4}-3 x^{2} y+y^{2}$ has local minima.
(c) Let $(X, \mathrm{~d})$ and $\left(Y, \mathrm{~d}^{\prime}\right)$ be two metric spaces and f be a continuous function from $X$ to $Y$, and $x_{0} \in X$. Show that $f$ is continuous if and only if for every sequence $\left\{x_{n}\right\}$ in $X$ converging to $x_{0}, f\left(x_{n}\right)$ converges to $f\left(x_{0}\right)$.
3. (a) Prove that every compact set in a metric space is closed and bounded. Is the converse true? Justify.
(b) Find the directional derivative of the function $f: \mathbf{R}^{3} \rightarrow \mathbf{R}$ given by $f(x, y, z)=$ $y^{2}+2 x z$ in the direction $\mathrm{V}=(0,1,2)$ at the point (1, 2, -3 ).
4. (a) If $E_{1}$ and $E_{2}$ are measurable sets and $\mathrm{E}_{1} \cap \mathrm{E}_{2}=\phi$, then prove that $\mathrm{E}_{1} \cup \mathrm{E}_{2}$ is measurable.
(b) Check the differentiability of the following

5 functions at the indicated points. Find the derivative wherever they exist.
(i) The function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ given by $f\left(x_{1}, x_{2}\right)=\left|x_{1}\right|+\left|x_{2}\right|, \mathrm{a}=(1,0)$.
(ii) The function $f: \mathbf{R}^{4} \rightarrow \mathbf{R}^{2}$ given by:

$$
\begin{aligned}
& f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}^{2}-x_{2}^{2}, x_{3}^{2}-x_{4}^{2}\right) \\
& \text { at } \mathrm{a}=(1,0,2,-1) .
\end{aligned}
$$

5. (a) Define Fourier transform of a measurable
function $f$ with $\int_{-\infty}^{\infty}|f(x)| \mathrm{d} x<\infty$

Let $f \in \mathrm{~L}^{1}(\mathbf{R})$. Then prove that $\hat{\mathrm{f}}$ is continuous on $\mathbf{R}$, where $\hat{\mathrm{f}}$ is the Fourier transform of $f$.
(b) Define a component in a metric space. Show that every non-empty connected subset of a metric space is contained in a unique component.
6. (a) State Implicit Function Theorem and verify 4 the theorem for the function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ given by $f(x, y)=y^{2}-y x^{2}-2 x^{5}$ in the neighbourhood of the point $(1,-1)$.
(b) Find the Fourier Series for the function 4 $f(\mathrm{t})=\mathrm{t}^{2},-\pi \leq \mathrm{t} \leq \pi$.
(c) Show that the set $\left\{1, \frac{1}{2}, \frac{1}{3} \ldots ..\right\}$ is no where 2 dense in R with standard metric.
7. (a) Show that the system $\mathrm{R}: \mathrm{S} \rightarrow \mathrm{S}$ given by 3
$g(\mathrm{t})=(\mathrm{Rf})(\mathrm{t})=\int_{-\infty}^{\mathrm{t}} f(\hat{\mathrm{j}}) \mathrm{d} \tau$, is a time-
invariant system.
(b) Obtain the second order Taylor's series
expansion of the function f , defined by $f\left(x_{1}, x_{2}\right)=x_{1}^{2} x_{2}+5 x_{1} \mathrm{e} x_{2}$ at $(-1,0)$.
(c) State Monotone Convergence theorem.

Check whether the sequence $\left\{f_{n}\right\}$ where $f_{\mathrm{n}}=\chi_{[\mathrm{n}, \mathrm{n}+1]}(\mathrm{n}=1,2, \ldots$.$) satisfies the$ conditions of Monotone Convergence theorem.

