MMT-003

M.Sc. (MATHEMATICS WITH P) **APPLICATIONS IN COMPUTER SCIENCE)** 0087. M.Sc. (MACS)

Term-End Examination

June, 2011

MMT-003 : ALGEBRA

Time : 2	2 hours	Maximum Marks : 50			
Note :	Question No. 1 is comp	ulsory. Also do any four			
	questions from Q. No. 2 t	o Q. No. 6. Calculators are			
	not allowed.				

- Which of the following statements are true and 1. 10 which are false ? Give reasons for your answer.
 - (a) A group of order 15 has a unique subgroup of order 5.
 - (b) If $ax \equiv bx \pmod{n}$, then $a \equiv b \pmod{n}$ where a, b, n $\in \mathbb{Z}$.
 - (c) If G is a free abelian group of rank m and if H is a proper subgroup of G of rank n, then n < m.
 - A group of order 36 can have an irreducible (d) representation of degree 6.

1

(e) If
$$\alpha = e^{\frac{2\pi i}{7}}$$
 and $\beta = e^{\frac{2\pi i}{5}}$, $\beta \in Q(\alpha)$.

MMT-003

- 2. (a) Let $G = GL_n(R)$ operate on the set $S = R^n$ by 2 left multiplication. Describe the decomposition of S into orbits under this operation.
 - (b) Prove that $\frac{H}{\{\pm 1\}}$ is isomorphic to the Klein 6

4-group, where *H* is the group of quaternions. Use this fact to obtain all the 1-dimensional representations of *H*.

- (c) Let α be a real cube root of 2. Obtain the 2 monic irreducible polynomial satisfied by $1 + \alpha$.
- 3. (a) Let $\sigma_1, \sigma_2, ..., \sigma_k$ be disjoint cycles of length 5 $m_1, m_2, ..., m_k$, respectively, and $\sigma = \sigma_1, \sigma_2 ..., \sigma_k$. Show that the order of σ is $l \text{ cm} (m_1, m_2, ..., m_k)$.
 - (b) Prove that the subgroup SO_2 of SU_2 is 5 conjugate to the subgroup

$$T = \left\{ \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \middle| \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \in S U_2 \right\}.$$

MMT-003

4. (a) Prove that every characteristic subgroup is **2** normal.

	(1)	(1)	(2)	(2)	(2)
	1	а	b	С	d
χ1	1	1	1	1	1
χ2	1	1	-1	-1	1
χ3	1	1	-1	-1	-1
X4	2	-2	0	0	0

(b) Consider the incomplete character table for 8 a group given below :

All the conjugacy classes are there.

- (i) What is the order of the group ?
- (ii) How many characters are missing ?
- (iii) Find the missing character and complete the table.
- (iv) Find the order of the Kemel of the missing character.
- 5. (a) Evaluate the legendre symbol $\left(\frac{7}{61}\right)$ using 3 the quadratic reciprocity law.
 - (b) Give an example of an automaton and **3** justify why it is an automaton.
 - (c) Let K be a field generated over a field F by 4 two elements α , β of relatively prime degrees m, n respectively. Prove that [K : F] = mn.

MMT-003

P.T.O.

- 6. (a) (i) Show that there is a unique irreducible polynomial of degree 2 over \mathbb{F}_2 and find the polynomial.
 - (ii) Let α be a root of the irreducible polynomial. Show that $\sigma(\alpha) = \alpha H$ is a field automorphism.

4

(b) If F is a finite field, show that there is always an irreducible polynomial of the form $x^3 - x - a$, where a ϵF

(c) Let
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \in GL_2(\mathbb{F}_5)$$
. Determine the **3**

order of its conjugacy class in $GL_2(\mathbb{F}_5)$.

4