M.Sc. (MATHEMATICS WITH
in APPLICATIONS IN COMPUTER SCIENCE)
M.Sc. (MACS)

Term-End Examination
June, 2011
MMT-003 : ALGEBRA
Time : 2 hours Maximum Marks:50

Note: Question No. 1 is compulsory. Also do any four questions from Q . No. 2 to Q . No. 6. Calculators are not allowed.

1. Which of the following statements are true and $\mathbf{1 0}$ which are false? Give reasons for your answer.
(a) A group of order 15 has a unique subgroup of order 5 .
(b) If $\mathrm{ax} \equiv \mathrm{b} x(\bmod n)$, then $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{n})$ where $a, b, n \in \mathbb{Z}$.
(c) If G is a free abelian group of rank m and if H is a proper subgroup of G of rank n, then $\mathrm{n}<\mathrm{m}$.
(d) A group of order 36 can have an irreducible representation of degree 6 .
(e) If $\alpha=\mathrm{e}^{\frac{2 \pi i}{7}}$ and $\beta=\mathrm{e}^{\frac{2 \pi i}{5}}, \beta \in Q(\alpha)$.
2. (a) Let $G=\mathrm{GL}_{\mathrm{n}}(R)$ operate on the set $\mathrm{S}=\boldsymbol{R}^{\mathrm{n}}$ by left multiplication. Describe the decomposition of S into orbits under this operation.
(b) Prove that $\frac{H}{\{ \pm 1\}}$ is isomorphic to the Klein 6 4-group, where H is the group of quaternions. Use this fact to obtain all the 1-dimensional representations of \boldsymbol{H}.
(c) Let α be a real cube root of 2 . Obtain the 2 monic irreducible polynomial satisfied by $1+\alpha$.
3. (a) Let $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}$ be disjoint cycles of length 5 $m_{1}, \quad m_{2}, \quad \ldots, \quad m_{k}$, respectively, and $\sigma=\sigma_{1}, \sigma_{2} \ldots . \sigma_{k}$. Show that the order of σ is $l \mathrm{~cm}\left(\mathrm{~m}_{1}, \mathrm{~m}_{2}, \ldots, \mathrm{~m}_{\mathrm{k}}\right)$.
(b) Prove that the subgroup SO_{2} of SU_{2} is 5 conjugate to the subgroup

$$
T=\left\{\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right) \left\lvert\,\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right) \in S U_{2}\right.\right\} .
$$

4. (a) Prove that every characteristic subgroup is 2 normal.
(b) Consider the incomplete character table for 8 a group given below :

	(1)	(1)	(2)	(2)	(2)
	1	a	b	c	d
χ_{1}	1	1	1	1	1
χ_{2}	1	1	-1	-1	1
χ_{3}	1	1	-1	-1	-1
χ_{4}	2	-2	0	0	0

All the conjugacy classes are there.
(i) What is the order of the group ?
(ii) How many characters are missing ?
(iii) Find the missing character and complete the table.
(iv) Find the order of the Kemel of the missing character.
5. (a) Evaluate the legendre symbol $\left(\frac{7}{61}\right)$ using 3 the quadratic reciprocity law.
(b) Give an example of an automaton and 3 justify why it is an automaton.
(c) Let K be a field generated over a field F by 4 two elements α, β of relatively prime degrees m, n respectively. Prove that $[K: F]=m n$.
6. (a) (i) Show that there is a unique irreducible polynomial of degree 2 over \mathbb{F}_{2} and find the polynomial.
(ii) Let α be a root of the irreducible polynomial. Show that $\sigma(\alpha)=\alpha H$ is a field automorphism.
(b) If F is a finite field, show that there is always 3 an irreducible polynomial of the form $x^{3}-x-\mathrm{a}$, where $\mathrm{a} \in \mathrm{F}$
(c) Let $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right] \in G L_{2}\left(F_{5}\right)$. Determine the order of its conjugacy class in $\mathrm{GL}_{2}\left(\mathrm{~F}_{5}\right)$.

