M.Sc. (MATHEMATICS WITH
$\stackrel{\sim}{\sim}$ APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)
Term-End Examination
June, 2011
MMT-002 : LINEAR ALGEBRA
Time : $11 / 2$ hours
Maximum Marks : 25
Note: Question No. 5 is compulsory. Answer any three questions from question Nos. 1 to 4. Use of calculators is not allowed.

1. (a) Let T be a linear operator from \mathbf{R}^{3} to itself $\mathbf{3}$
given by $T\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}x_{1}+2 x_{2} \\ 2 x_{2} \\ -2 x_{1}-2 x_{2}-x_{3}\end{array}\right]$.
Find the matrix of T with respect to the
ordered basis $\left\{\left[\begin{array}{c}2 \\ 1 \\ -2\end{array}\right],\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$
(b) Show that, if U is a Unitary matrix with 2 integer entries then each row and each column of U will have exactly one non-zero entry which is 1 or -1 .
2. (a) Write the Jordan canonicla form for

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

(b) Find the least square solution of the smallest 3 norm for the system $\mathrm{A} x=y$ where

$$
A=\left[\begin{array}{rrr}
1 & -1 & 0 \\
0 & -1 & 1 \\
1 & 0 & -1 \\
1 & -2 & 1
\end{array}\right] \text { and } y=\left[\begin{array}{l}
1 \\
0 \\
2 \\
0
\end{array}\right]
$$

3. (a) Why is the matrix $A=\left[\begin{array}{lll}0 & 0 & -1 \\ 0 & 1 & -1 \\ 1 & 0 & -1\end{array}\right]$ not 3 unitarily diagonalisable? Find a unitary matrix U such that $U^{*} A U$ is upper triangular.
(b) Find let $\left(e^{A}\right)$ if $A=\left[\begin{array}{cc}2 & 2 \\ -1 & -1\end{array}\right]$.
4. Find the singular value decomposition of 5

$$
\left[\begin{array}{lr}
1 & -1 \\
-2 & 2 \\
2 & -2
\end{array}\right]
$$

5. Which of the following statements are true and which are false ? Give reasons for your answer. $2 \times 5=10$
(a) If u and v are eigen vectors of a matrix A, $u-v$ is also an eigen vector of A.
(b) Two similar matrices have the same minimal polynomial.
(c) All the entries of a positive semi-definite matrix are non-negative.
(d) If A is a Hermitian matrix, then singular values of A are its eigen values.
(e) If D is a diagonalisable $\mathrm{n} \times \mathrm{n}$ matrix and N is a nilpotent $\mathrm{n} \times \mathrm{n}$ matrix, then D and N commute.
