BIME-023

4 D]	IPLO	MA IN MECHANICAL ENGINEERING (DMEVI)	ŗ
マ い Term-End Examination			
00		June, 2011	
BIN	ME-0	23 : ENGINEERING THERMODYNAMIC	S
Time	: 2 h	ours Maximum Marks :	70
Note	e: A si	ttempt any five. First question is compulsory. Use team - tables and Mollier's chart is allowed.	? of
1.	Fill	in the blanks :	
	(a)	A system consisting of single phase is called system.	2
	(b)	The law provides that basis for temperature measurement.	2
	(c)	A perfect gas obey the law	2
	(d)	Internal energy is a of a system.	2
	(e)	The processes involved in carnot cycle are and	2
	(f)	Entropy of an isolated system either or	2
	(g)	A mixed phase of liquid and gas is called	2

BIME-023

1

- 2. (a) What is meant by thermodynamic 7 equilibrium?
 - (b) The relationship between pressure and volume in a non flow process is prescribed

7

7

7

by the expression $p = \left(\frac{3}{v} + 2\right)$, where pressure p is in bar and volume is in m³. During the process 1600 kJ of heat is added to the gas and the volume changes from 1.2 m³ to 4 m³. Determine the change in internal energy.

- 3. (a) State the limitations of first law of 7 thermodynamics.
 - (b) In a certain heat exchanger 50 kg of water is heated per minute from 50°C to 110°C by hot gases which enter the heat exchanger at 250°C. If the flow rate of gases is 100 kg/min, estimate the net change in entropy

 C_p for water = 4.186 kJ/kgK C_p for gas = 1 kJ/kgK

- 4. (a) A centrifugal pump delivers 2750 kg of water per minute from initial pressure of 0.8 bar (absolute) to a final pressure of 2.8 bar (absolute). The suction is 2 m below and the delivery is 5 m above the centre of the pump. If the suction and delivery pipes are of 15 cm and 10 cm diameter respectively. Make calculations for power required to drive the pump.
 - (b) Explain the Carnot cycle with p-v and T-s diagrams. Derive the expression for efficiency of Carnot Heat Engine.

BIME-023

2

- (a) A steam turbine working on Rankine cycle is supplied with dry saturated steam at 25 bar and the exhaust takes place at 0.2 bar. For a steam flow rate of 10 kg/sec. Calculate
 - (i) quality of steam of the end of expansion
 - (ii) turbine shaft work
 - (iii) Efficiency of cycle
 - (b) Explain the working of throttling 7 calorimeter.
- 6. (a) A lump of 800 kg of steel at 1250 K is to be cooled to 500 K. If it is desired to use the steel as source of energy, calculate the available and unavailable energies. Take specific heat of steel as 0.5 kJ/kgK and ambient temperature as 300 K.
 - (b) Explain the loss of available energy due to heat transfer through a finite Temperature difference.
- 7. (a) The percentage analysis by mass of a solid 7 fuel is : C=87%, $H_2=3\%$, $O_2=3\%$, $N_2=1\%$, S=1%and the remainder is ash. If 50% excess air

and the remainder is ash. If 50% excess air is supplied. Find

- (i) the theoritical amount of air required to complete the combustion of fuel.
- (ii) volumetric analysis of wet flue gases and the mass of flue gas per kg of fuel.
- (b) Derive Availability function for a non flow system.

7

7

7

3