IPLOMA IN MECHANICAL ENGINEERING

 (DME)Term-End Examination

June, 2011

[E-0.52 : BASICS OF THERMAL ENGINEERING

e: All questions are compulsory.
Use of scientific calculator is permitted.
Use of steam table, Mollier diagram are permitted.

Answer any two of the following: $\quad 2 \times 7=14$
(a) A piston - cylinder device with air at an initial temperature of $30^{\circ} \mathrm{C}$ undergoes an expansion process for which pressure and volume are related as given below:

$P(K \mathrm{Ka})$	100	37.9	14.4
$V\left(\mathrm{~m}^{3}\right)$	0.1	0.2	0.4

Calculate the work done by the system.
(b) State the following laws
(i) Boyle's law
(ii) Charle's law
(iii) Zeroth law of thermodynamics
(iv) First law of thermodynamics
(c) Water flows through a turbine in which friction causes the water temperature to raise from $35^{\circ} \mathrm{C}$ to $37^{\circ} \mathrm{C}$. If there is no heat transfer, how much does the entropy of the water change in passing through the turbine? (Water is in compressible and the process can be taken to at constant volume)
2. Explain the working principle with neat sketch, auly two of the following $2 \times 7=14$
(a) Lancashire boiler
(b) Cochran boiler
(c) Babcock and Wilcox boiler
3. Answer any two of the following : $2 \times 7=14$
(a) Dry steam expands through a nozzle from a pressure of 15 bar to a pressure of 10 bar. Assuming the flow to be frictionless and adiabatic, estimate the velocity of the steam jet.
(b) Explain the construction and working of an impulse (steam) turbine with a neat sketch.
(c) Describe, with a line diagram, the various elements of a steam power plant.

Answer any twoo of the following. $\quad 2 \times 7=14$
(a) A furnace wall comprises three layer: 13.5 cm thick inside layer of fire brick, 7.5 cm thiek middle layer of insulating brick and 11.5 cm thick outside layer of red brick. The furnace operates at $870^{\circ} \mathrm{C}$ and it is anticipated that the outside of this composite wall can be maintained at $40^{\circ} \mathrm{C}$ by the circulation of air. Assuming close bonding of layers at their interfaces, find the rate of heat loss from the furnace and wall interface temperatures. The wall measures $5 \mathrm{~m} \times 2 \mathrm{~m}$ and thermal conductivities of Fire brick $=1.2 \mathrm{~W} / \mathrm{mK}$; insulating brick $=0.14 \mathrm{~W} / \mathrm{mK}_{\text {; }}$ Red brick $=$ $0.85 \mathrm{~W} / \mathrm{mK}$.
(b) A black body of total area $0.045 \mathrm{~m}^{2}$ is completely enclosed in a space bounded by 5 cm thick walls. The walls have a surface area $0.5 \mathrm{~m}^{2}$ and thermat conductivity $107 \mathrm{~W} / \mathrm{m}$, If the inner surface of the enveloping wall is to be maintained at $215^{\circ} \mathrm{C}$ and the outer wall surface is at $30^{\circ} \mathrm{C}$, Galculate the temperature of the black body. Neglect the difference between inner and apter surface areas of enveloping material.
(c) The exhaust steam 0.975 dry enters a surface condenser at 0.12 bar. The condensate leaves at $44^{\circ} \mathrm{C}$. If the temperature rise of circulating water is $14^{\circ} \mathrm{C}$, determine the amount of cooling water required per kg of steam condensed.
5. Write short notes on any two of the followig : $2 \times 7=14$
(a) Solar energy
(b) Wind power energy
(c) Geothermal energy.

