No. of Printed Pages: 3

OIEL-002

DECVI / DCSVI

Term-End Examination

June, 2011
O OIEL-002: DATA STRUCTURES AND FILES

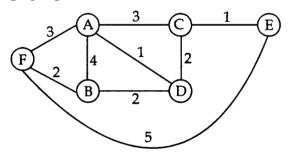
Time	e : 2 h	ours	Maximum Marks : 70		
Not		ttemp ompu		uestions.	Question No. 1 is
1.	(a)		ich of the fol tifier? 1 SUM	J	is not a valid 2x7=14 SUM_1
	(b)	` '	SUM 1 en a function ?	` '	none of these self it is called
	(c)	(iii) An a	Selection Insertion algorithm is -	` ,	Recursion None of these
	(d)	(ii) (iii) (iv)	An error in p A program is A problem None of thes ch of the follo	tself e	not a dynamic
		men (i) (iii)	nory allocation malloc () Realloc ()	(ii)	Calloc ()

		(i)	Sparse Matri	x				
		(ii)	Adjacency Matrix					
		(iii)	Transpose Matrix					
		(iv)	Graph Matri					
	(f)	Which one is single - source shortest path algorithm ?						
		(i)	Dijkstra Algorithm					
		(iii)						
		orithm						
	(g)	Complexity of Binary Search is						
		(i)	O (log _e n)	(ii)	O (n)			
		(iii)	O (log ₂ n)	(iv)	O (log ₁₀ n)			
2. (a) Differentiate between call by value are by reference technique with surexample.						7		
	(b)	Write a recursive function to compute factorial of a given number.						
3.	(a)	Write an algorithm for binary search.						
	(b)	What do you mean by collisions in hashing? How are they handled?						

OIEL-002

(e) Graph representation in matrix is called -

 (a) Write an algorithm to convert infix expression into an equivalent post-fix expression. Trace your algorithm for following infix expression.


$$A + B \times C - D/F$$
.

(b) What is a Circular Queue ? How it is implemented ?

7

7

- 5. (a) Create your own Binary Tree. Perform in order, pre order and post order traversal of the tree.
 - (b) Draw the minimum spanning tree for the 7 graph given below

- 6. (a) Write an algorithm to insert a node at beginning of a linked list.
 - (b) Write an algorithm to create a doubly linked list.
- 7. (a) Write an algorithm for merge sort. Also analyse this algorithm.
 - (b) How polynomials are represented by using array? Illustrate with example.