DIPLOMA IN ELECTRONICS AND COMMUNICATION ENGINEERING (DECVI)

Term-End Examination
June, 2011

BIEL-030 : Digital Electronics

Time : 2 hours
Maximum Marks : 70
Note: Attemt any five questions. Each carry equal marks. Question no one is compulsory (objectives). Give answer precisely and accurate.

1. Attempt all objectives questions.
(a) 1^{s} complement of the 101011 is
(i) 010100
(ii) 000000
(iii) 111111
(iv) 100000
(b) The expression $\overline{\mathrm{ABC}}$ can be simplified
(i) $\overline{\mathrm{A}} \mathrm{B} \overline{\mathrm{C}}$
(ii) $\mathrm{AB}+\mathrm{BC}+\mathrm{CA}$
(iii) $\mathrm{AB}+\overline{\mathrm{C}}$
(iv) $\bar{A}+\bar{B}+\bar{C}$
(c) The Universal gates are
(i) NAND and NOR
(ii) AND and OR
(iii) OR and $\mathrm{X}-\mathrm{OR}$
(iv) None
(d) 3×8 Decoder have
(i) $3 \mathrm{I} / \mathrm{p}^{\mathrm{s}}$ and $80 / \mathrm{p}^{\mathrm{s}}$
(ii) $8 \mathrm{I} / \mathrm{p}^{\mathrm{s}}$ and $30 / \mathrm{p}^{\mathrm{s}}$
(iii) $8 \mathrm{I} / \mathrm{p}^{\mathrm{s}}$ and $80 / \mathrm{p}^{\mathrm{s}}$
(iv) none
(e) The following is not a sequential circuit.
(i) J-K flip-flop
(ii) Counter circuit
(iii) Full adder
(iv) Shift Register
(f) MUX have
(i) many I / p^{s} and one O / p
(ii) one I / p^{s} and many O / p^{s}
(iii) one I / p^{s} and one O / p
(iv) None.
(g) Combinational circuits are designed with.
(i) feedback
(ii) without feedback
(iii) either (i) or (ii),
(iv) None.
2. (a) Converts the following base.
$\mathbf{2 x 7 = 1 4}$
(i) $\quad(1010.11)_{2}=(\text { P. })_{8}=(\mathrm{P} .)_{16}=(\mathrm{P} .)_{10}$
(ii) $\quad(3 \mathrm{AE} 5)_{16}=(\mathrm{P} .)_{8}=(\mathrm{P} .)_{10}=(\mathrm{P} .)_{2}$
(iii) Add (3269) ${ }_{12}+(2368)_{12}$ without changing base
(b) Realize the following function using basic gates.
(i) $\mathrm{Y}=\mathrm{AB} \overline{\mathrm{C}}+\overline{\mathrm{A}} \mathrm{BC}+\mathrm{ABC}$
(ii) $\mathrm{Y}=\mathrm{ABCD}+\overline{\mathrm{A}} \mathrm{BC} \overline{\mathrm{D}}+\mathrm{AB} \overline{\mathrm{C}} \overline{\mathrm{D}}$
3. (a) Converts the following into canonical form.

$$
\begin{array}{ll}
\text { (i) } & A B+B C+C A \\
\text { (ii) } & \text { (A+B) } \cdot(B+C) \cdot(C+A)
\end{array}
$$

(b) Minimize the following using K-MAP.
(i) $f(w, x, y, z)=\Sigma \mathrm{m}(0,1,2,4,5,6,8,9,12,13,14)$
(ii) $\quad \mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum \pi(2,3,4,5,6,7,11,14,15)$
4. (a) Design a gray to binary converter ckt of 3 bit (variable).
(b) Write the steps for combination ckt Design and design a full adder ckt with basic gates.
5. (a) Give difference between combinational ckt and sequential ckt and Design a S-R flip-flop Using NAND gates.
$2 \times 7=14$
(b) Design a Asynchronous MOD 8 counter ckt.
6. (a) Design a 8×1 Multiplexer circuit and give the application of MUX.
$2 \times 7=14$
(b) Design a 4 bit shift Register ckt.
7. Write the short notes on any two.
(a) Propagation delay and Fan In and Fan out
(b) C MOS Inverter ckt.
(c) TTL logic family.
(d) EPROM and EEPROM.

