No. of Printed Pages : 5

# DIPLOMA IN ELECTRONICS AND COMMUNICATION ENGINEERING (DECVI)

#### **Term-End Examination**

### June, 2011

## **BIEL-028 : CIRCUITS AND NETWORKS**

Time : 3 hours

**Note :** Attempt any five questions. Each questions carry equal marks.

- 1. Attempt any two parts.
  - (a) Determine the voltage across the  $10\Omega$  resistor using Nodal analysis in fig 1.



(b) Discuss the source transformation for dependent sources.

1

BIEL-028

P.T.O.

00832

Maximum Marks : 70

14

(c) Determine the current in Branch BD where galvanometer is connected in fig. 2.



- 2. Attempt any two parts.
  - (a) Discuss the Natural Response of RC Network and also find the characteristic equation of RC Network.
  - (b) Determine the current through the Inductor L for t≥0 as a parallel RL circuit. The switch is been in position 1 for a long time and then moved to position 2 at t=0 circuit shown in fig 3.



2

**BIEL-028** 

(c) Explain the series resonance in the circuit also discuss the figure of merit.

### 3. Attempt any two parts.

(a) Draw the Thevenin's equivalent of the circuit given in and find the load current in  $2 \Omega$  resistor. fig 4



Fig. 4

- (b) Discuss the maximum power transfer theorem and prove maximum power will be  $P = E^2/4R$ .
- (c) Determine current through 5  $\Omega$  Resistor using Norton theorem in fig. 5.



Fig. 5

BIEL-028

- 4. Attempt *any two* parts.
  - (a) Discuss the significance of pale and zero in Network functions.

(b) If F(s) = 
$$\frac{S(S+1)}{(S+4)(S^2+4S+Q)}$$

Find f(t) using the pale-zero diagram of the functions.

- (c) Discuss the Necessary condition for transfer function also discuss the pale position on the system stability.
- 5. Attempt *any two* parts.
  - (a) Find the Z parameters for the  $\pi$  Network in Fig 6.



(b) Determine the h parameters for the Network in fig 7.



Fig. 7

BIEL-028

P.T.O.

(c) Determine ABCD parameters for the Network in fig 8.



- 6. Attempt *any two* parts :
  - (a) Discuss series series inter connection of two port Networks.
  - (b) Explain impedance transformation in resonance circuits.
  - (c) Discuss super position theorem with example. How it is helpful in Network analysis.

### 7. Attempt *any two* for writing short notes. 14

- (a) T- Type Attenuator
- (b) Constant K Type Low Pass Filter.
- (c) Hybrid Parameters.
- (d) Series Resonance Circuit.

BIEL-028

5

14