Diploma in Electrical and Mechanical Engineering

Term-End Examination June, 2011

BME-043: RAC/UTILIZATION

Time: 2 hours Maximum Marks: 70

Note: All questions are compulsory. Use of calculator is allowed. Psychrometric chart is provided.

1. Choose the correct answer.

- 14x1=14
- (a) The main difference between a refrigerating machine and a heat pump is in their:
 - (i) Operating pressure
 - (ii) Operating temperature
 - (iii) Net volume
 - (iv) None of the above
- (b) Which one of the following is the designation of R f 17?
 - (i) Carbon dioxide
 - (ii) Water
 - (iii) Ammonia
 - (iv) Methane

(c)	refri	igerat	-	tem		compression ceiver supplies		
	(i)	Cor	npresso	r	(ii)	Condenser		
	(iii)	Exp	ansion	valve	e (iv)	Evaporator		
(d)	The density of the refrigerant should be:							
	(i)	as small as possible						
	(ii)	i) as large as possible						
	(iii)	(iii) medium						
	(iv)	Nor	ne of the	e abo	ve			
(e)	In counterflow heat exchanger, the direction of flow of hot and cold fluid is:							
	(i)	San	ne		(ii)	Opposite		
	(iii)	At 9	90°C		(iv)	None		
(f)	If H ₁ , H ₂ , H ₃ and H ₄ are the enthalpy of refrigerant at the end of evaporation, compression, condensation and expansion respectively, what should be the work done?							
	(i)	H ₂ -	-H ₁	÷	(ii)	$H_1 - H_4$		
	(iii)	H ₃ -	$-H_4$		(iv)	$H_2 - H_3$		
(g)	Viscosity of refrigerant should be:							
	(i)	Hig	h	(ii)	Medi	ium		
	(iii)	Low	7	(iv)	Noth	ing can be said		

(h) Which one is the correct expression of effectiveness for parallel flow heat exchanger?

(i)
$$\frac{1-e^{-NTU(1-R)}}{1+e^{-NTU(1-R)}}$$

(ii)
$$\frac{1+e^{-NTU(1-R)}}{1-e^{-NTU(1-R)}}$$

(iii)
$$\frac{1-e^{-NTU(1-R)}}{1-R}$$

(iv)
$$\frac{1-e^{-NTU(1+R)}}{1+R}$$

(i) The ratio of sensible heat transfer to the total heat transfer is called as:

(i) SHF

- (ii) LHF
- (iii) RTCL
- (iv) BF

(j) In cooling and humidification process.

- (i) dry bulb temperature reduces and moisture content increases.
- (ii) dry bulb temperature increases and moisture content decreases.
- (iii) only dry bulb temperature decreases
- (iv) only moisture content decreases.

	15.							
	(i)	Base temperature						
	(ii)	Log mean temperature						
	(iii)	Wet bulb temperature						
	(iv)	Medium temperature						
(1)	$\mathrm{Wm}^{-1}\mathrm{K}^{-1}$ is the unit of :							
	(i)	Thermal conductivity						
	(ii)	Thermal resistance						
	(iii) Heat transfer coefficient							
	(iv) None of the above							
(m)	RPM	PM of the rotating component is measured						
	by:							
	(i)	Pirani	(ii)	Megger				
	(iii)	Wattmeter	(iv)	Stroboscope				
(n)	As per fan law's, which is the correct one?							
	(i)	$Q \propto N^2$	` '	$Q \propto N^3$				
	(iii)	$Q \propto N$	(iv)	$Q \propto N^5$				
Ansv	ver th	e following:						
(a) (i) Define coefficient of performance of								
		refrigeration cycle.						
	(ii)) Describe vapour compression						
			refrigeration system, stating major					
		components.						

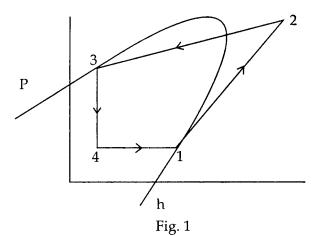
In the equation $Q = UA \Delta Tm$, the term Tm

2.

(k)

OR

State all processes involved in vapour	7
compression refrigeration indicating on T-s	
and P-h diagram.	


- (b) Write any five thermodynamic properties of a good refrigerant. Can water be used as a refrigerant?
- 3. Answer *any two* of the following: 2+5
 - (a) (i) State the law of cooling for convention
 - (ii) Deduce an expression for overall heat transfer coefficient for a plane composite wall.
 - (b) (i) What is a heat exchanger? How are the heat exchangers classified? 3+3+1
 - (ii) Describe any one type of heat exchanger.
 - (iii) Expand the term LMTD.
 - (c) (i) State different types of heat transfer modes in evaporators. 3+3+1
 - (ii) What are the common methods of augmentation of heat transfer in evaporators?
 - (iii) Define recirculation number 'n'.

- 4. Answer any two of following:
 - (a) (i) How are compressors classified? 2+2+3
 - (ii) Define volumetric efficiency.
 - (iii) Write methods of improving volumetric efficiency.
 - (b) (i) What is the function of condenser in **2+5** refrigeration system?
 - (ii) Write short notes on any two:
 - (A) Air cooled condenser
 - (B) Water cooled condenser
 - (C) Evaporative condenser
 - (c) (i) What is the function of evaporator in **2+5** refrigeration system?
 - (ii) How are the evaporators classified? Explain the functioning of any one type with the help of neat sketch.
- 5. Answer *any two* of the following:
 - (a) 100 m³ of air per minute at 30°C DBT and 60% RH is cooled to 20°C DBT by passing through a cooling coil. Atmospheric pressure is 1 bar. Using psychrometric chart, find:

7

- (i) Capacity of cooling coil in TR
- (ii) RH and WBT of air after cooling

(b) In P-h diagram as shown in fig. 1 7 $h_1 = 102 \text{ kJ/kg}$, $h_2 = 215.6 \text{ kJ/kg}$ and $h_3 = h_4 = 42 \text{ kJ/kg}$.

Calculate:

- (i) Compressor work
- (ii) Heat absorbed in evaporator
- (iii) Heat rejected in condenser
- (iv) COP of cycle.
- (c) Define bypass factor. List out the major sources of heat gain for air conditioning load estimation.

7