Diploma in Civil Engineering / Diploma

 in Electrical and Mechanical Engineering
Term-End Examination

June, 201103763

BET-021 : MATHEMATICS-II

Time : 2 hours
Maximum Marks : 70
Note: Question No. 1 is compulsory. Attempt any four questions out of the remaining questions no. 2 to 7. Use of calculator is permitted.

1. (a) Select the correct answer. $\mathbf{7 \times 1 = 7}$
(i) $\lim _{x \rightarrow 7} \frac{\sin 7 x}{x}$ is equal to :
(A) $\frac{1}{7}$
(B) 7
(C) 0
(D) -7
(ii) $\operatorname{Sin} h x$ is equal to :
(A) $\frac{\mathrm{e}^{-x}-\mathrm{e}^{x}}{2}$
(B) $\frac{\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-x}}{2}$
(C) $\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}$
(D) $\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2 \mathrm{i}}$
(iii) Which function is continuous for all $x \in \mathrm{R}$?
(A) $\tan x$
(B) $\sec x$
(C) $\operatorname{cosec} x$
(D) $\cos x$
(iv) $\int \operatorname{cosec}^{2} x d x$ is equal to :
(A) $-\cot x+c$
(B) $\cot x+c$
(C) $\operatorname{cosec} x \operatorname{Cot} x+c$
(D) None of these
(v) $\int_{0}^{8} x^{4 / 3} \mathrm{~d} x$ is equal to :
(A) $\frac{3}{7}(2)^{7 / 3}$
(B) $\frac{3}{7}(2)^{7}$
(C) $\frac{3}{7}\left(2^{3}\right)^{7}$
(D) $\frac{3}{7}\left(2^{2}\right)^{7 / 3}$
(vi) $(\sqrt{3}+i)^{n}$ equal to :
(A) $2^{n}\left\{\cos \left(\frac{\mathrm{n} \pi}{6}\right)+i \sin \left(\frac{\mathrm{n} \pi}{6}\right)\right\}$
(B) $2^{n+1} \cos \frac{n \pi}{6}$
(C) $2^{n+1} i \sin \frac{n \pi}{6}$
(D) None of these
(vii) If $A=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$ then A^{2} is equal to:
(A) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
(B) $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$
(C) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
(D) $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$
(b) Fill in the blanks.
(i) Let $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 4\end{array}\right]$ and
$B=\left[\begin{array}{lll}2 & 3 & 0 \\ -1 & 2 & 5\end{array}\right]$, than $A-B$ is equal to \qquad
(ii) If $\left|\begin{array}{ll}x & 3 \\ 3 & x\end{array}\right|=0$ then $x=$ \qquad .
(iii) $\lim _{x \rightarrow 2} \frac{x^{3}-8}{x-2}$ is equal to \qquad
(iv) If $y=e^{m x}$ then $\frac{d^{n} y}{d x^{n}}=$
(v) Can Rolle's theorem be applied to $f(x)=\tan x$ in $[0, \pi]$,
(vi) $\int_{-1}^{1} e^{|x|} d x=$ -
(vii) The median of $5,8,9,12,15,16,18$, $19,23,25$, is \qquad
2. (a) Differentiate $\frac{\log x}{1+x \log x}$ with respect $7+7$ to x.
(b) Find the maximum profit that a company can make, if the profit function is given by; $p(x)=41+24 x-18 x^{2}$.
3. (a) Evaluate $\int e^{x}(1+x) \log \left(x e^{x}\right) d x$.
(b) Evaluate $\int_{-\pi}^{\pi}(\cos p x-\sin q x)^{2} d x$, where p and q are integers.
4. (a) Show that:

$$
\frac{(1+i)(1+\sqrt{3} i)}{1-i}=-\sqrt{3} i
$$

(b) Discuss the continuity of the function $f(x)$ at $x=1$.

$$
f(x)=\left\{\begin{array}{cc}
1+x^{2}, & 0 \leq x \leq 1 \\
1-x, & x>1
\end{array}\right.
$$

5. (a) Let $A=\left[\begin{array}{ccc}2 & -3 & 3 \\ 2 & 2 & 3 \\ 3 & -2 & 2\end{array}\right]$ find A^{-1} and Adj A. $7+7$
(b) If $\mathrm{A}=\left[\begin{array}{cc}\alpha & \beta \\ \gamma & -\alpha\end{array}\right]$ and A^{2} is a unit matrix of order 2×2 then prove that $\alpha^{2}+\beta \gamma=1$.
6. (a) Find the median from the following table. $7+7$

Marks	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
No. of Students	15	20	25	24	10	33	71	51

(b) Find the mean and standard deviation of the following.

Series	Frequency	Series	Frequency
$15-20$	2	$45-50$	20
$20-25$	5	$50-55$	17
$25-30$	8	$55-60$	16
$30-35$	11	$60-65$	13
$35-40$	15	$65-70$	11
$40-45$	20	$70-75$	5

7. (a) Expand $\left|\begin{array}{lll}a & h & g \\ h & b & f \\ g & f & c\end{array}\right|$.
(b) Show that $\int_{0}^{\infty} \frac{d x}{1+x^{2}}=\frac{\pi}{2}$.
