Diploma in Civil Engineering / Diploma in Electrical \& Mechanical Engineering

Term-End Examination
June, 201103241

BET-012 : PHYSICS
Maximum Marks : 70
e : Question no. 1 is compulsory. Attempt any four questions from the Question no. 2 to 8. Use of calculator is permitted.
(a) The surface tension is due to:
$7 \times 2=14$
(i) adhesive forces
(ii) cohesive forces
(iii) electrostatic forces
(iv) frictional forces
(b) Hooke's law defines :
(i) stress
(ii) strain
(iii) modulus of elasticity
(iv) elastic limit
(c) Average kinetic energy of the molecules of an ideal gas depends upon:
(i) the nature of gas
(ii) the absolute temperature
(iii) the volume
(iv) none of these.
(d) Quality of musical sound depends upon:
(i) pitch
(ii) loudness
(iii) amplitudes
(iv) number of harmonics
(e) Power of a lens is measured in:
(i) metres
(ii) cm
(iii) kilometres
(iv) diopters
(f) Four resistances of same values are connected in parallel. The total resistance of the combination will be :
(i) four times the resistance
(ii) one fourth of the resistance
(iii) half of the resistance
(iv) twice of the resistance
(g) The relative permeability can be expressed as :
(i) $\mu_{r}=1+\mu_{a}$
(ii) $\mu_{\mathrm{r}}=1+x_{\mathrm{m}}$
(iii) $\mu_{\mathrm{r}}=\frac{x_{\mathrm{m}}}{\mu_{0}}$
(iv) $\mu_{\mathrm{r}}=\mu_{0}+\mu_{\mathrm{a}}$
2. (a) State and explain Archimedes' principle.
(b) Derive the equation of continuity for flow of liquid.
(c) A 4 m long copper wire of cross sectional area $1.2 \mathrm{~cm}^{2}$ is stretched by a force of $4.8 \times 10^{3} \mathrm{~N}$. If the Young's modulus for copper is $1.2 \times 10^{11} \mathrm{Nm}^{-2}$ calculate :
(i) the stress,
(ii) the strain, and
(iii) increase in the length of the wire
3. (a) Explain the three modes of heat transfer. 5
(b) State the basic assumption of kinetic theory 5 of gas and derive the expression for its pressure.
(c) Calculate the average kinetic energy of an air molecule at a temperature of 300 K . $\left(K_{B}=1.38 \times 10^{-23} \mathrm{JK}^{-1}\right)$
4. (a) Explain the factors affecting the speed of sound in a gaseous medium.
(b) Explain the difference between a 5 longitudinal wave and transverse wave.
(c) Velocity of sound in air is $330 \mathrm{~ms}^{-1} . \quad \mathbf{4}$ Calculate the frequency of sound of wavelength 16.5 m .
5. (a) Derive the formulae $\mathrm{n}=\frac{\sin \left(\frac{\mathrm{A}+\delta \mathrm{m}}{2}\right)}{\sin \left(\frac{\mathrm{A}}{2}\right)}$

For prism where $\delta \mathrm{m}$ angle of minimum deviation, A angle of the prism, n is the refractive index.
(b) Describe Compound Microscope by 5 drawing ray diagram.
(c) Calculate the critical angle for a glass water 4 interface if the refractive indices of glass and water are $3 / 2$ and $4 / 3$ respectively.
(a) Define and explain electrical potential. 4
(b) Explain the principle of wheatstone Bridge. 4
(c) An electric bulb of 40 W works at 220 volts. 6 Calculate its resistance and current carrying capacity.
(a) What are the characteristics of 6 paramagnetic, diamagnetic and ferromagnetic substances ?
(b) Describe the working of a cyclotron.
(c) 5A current is flowing in a circular loop of 4 diameter 0.5 m . Calculate the magnetic field due to this coil at a distance of 0.15 m along the axis of the loop from its centre

$$
\left(\frac{\mu_{0}}{4 \pi}=10^{-7} \mathrm{TmA}^{-1}\right)
$$

8. Write short notes on any four of the following :
(a) Surface Tension
$4 \times 31 / 2=$
(b) Stefan's law
(c) Simple Microscope
(d) Coulomb's law
(e) Ohm's law
(f) Biot- Savart's law
