Diploma in Civil Engineering / Diploma in Electrical \& Mechanical Engineering

Term-End Examination
June, 2011
BET-011 : MATHEMATICS-I

Time : 2 hours
Maximum Marks : 70
Note: Question number 1 is compulsory. Attempt any four more questions out of the remaining questions numbered 2 to 6. Use of calculator is pernitted.

1. Answer any seven of the following :
(a) $4 \sqrt[3]{2}$ is equal to
(i) $\sqrt[3]{127}$
(ii) $\sqrt[3]{128}$
(iii) $\sqrt[3]{129}$
(iv) none of the above
(b) Roots of the equation
$x^{2}-i x+6=0$ are
(i) $3 i,-2 i$
(ii) $-3 i, 2 i$
(iii) $-3 i,-2 i \quad$ (iv) none of the above
(c) In flow chart, what is the meaning of the given shape?

(d) Find the middle term in the expansion of

$$
\left(\frac{2 a}{3}-\frac{3}{2 a}\right)^{6}
$$

(e) Prove that $\sin \theta \cot \theta+\sin \theta \operatorname{cosec} \theta=1+\cos \theta$.
(f) Find the coefficient of $\frac{1}{x^{5}}$ in the expression

$$
\text { of }\left(x-\frac{1}{2 x}\right)^{5}
$$

(g) Find the radius and centre of the circle $2 x^{2}+2 y^{2}=18$
(h) Find the value of α so that

$$
\begin{aligned}
& \vec{A}=2 \hat{i}+\alpha \hat{j}+\hat{k} \text { and } \\
& \vec{B}=4 \hat{i}-2 \hat{j}-2 \hat{k} \text { are perpendicular. }
\end{aligned}
$$

(i) Find the equation of the line through $(-7,-4)$ with slope-2.
(j) $-\hat{\mathrm{k}} \times \hat{\mathrm{i}}$ is equal to
2. (a) Solve the equation $\sqrt{x+4}=x-2$
(b) Find the $17^{\text {th }}$ term of the sequence $4,6,8, \ldots . . .$.
(c) The fourth term of an A.P. is equal to 3 times the first term and the seventh term exceeds twice the third term by 1 . Find the first term and common difference.
3.
(a) Prove that

$$
\sqrt{\frac{1-\cos \theta}{1+\cos \theta}}=\operatorname{cosec} \theta-\cot \theta
$$

(b) Prove that $\sin \left(45^{\circ}+A\right)-\cos \left(45^{\circ}-A\right)=0$
(c) If $\sin x+\sin ^{2} x=1$ then find the value of $\cos ^{8} x+2 \cos ^{6} x+\cos ^{4} \theta$.
4. (a) A town B is 13 km South and 18 km west of a tower A. Find the distance of town B from
A.
$6+4$
(b) Find k for which the distance between the points A $(k, 2)$ and $B(3,4)$ is 8 .
(c) Find the ratio in which the line joining the points $(-3,-4)$ and $(1,-2)$ is divided by the x-axis.
5. (a) Find the centre and radius of the circle $5+5$ $x^{2}+y^{2}+4 x-4 y-1=0$
(b) Find the equation of the ellipse whose foci are $(\pm 2,0)$ and eccentricity is $\frac{1}{2}$.
(c) Find the length of the perpendicular from the point $(3,-2)$ to the straight line $12 x-5 y+6=0$
(a) If $\vec{A} \times \vec{B}=\overrightarrow{0}$ and \vec{A} and \vec{B} are not zero $4+4+6$
show that \vec{A} is parallel to \vec{B}.
(b) If $\overrightarrow{\mathrm{A}}=2 \hat{i}+3 \hat{j}-\hat{k}$ and

$$
\begin{aligned}
& \vec{B}=-\hat{i}+4 \hat{j}-2 \hat{k} \text {, find the projection of } \\
& \vec{A} \text { on } \vec{B} .
\end{aligned}
$$

(c) Evaluate

$$
(2 \hat{i}-3 \hat{j}) \cdot[(\hat{i}+\hat{j}-\hat{k}) \times(3 \hat{i}-\hat{k})]
$$

