B.Tech. Civil (Construction Management)

Term-End Examination
June, 2011

ET-540(B) : FLOW IN OPEN CHANNEL

Time : 3 hours
Maximum Marks : 70
Note: Answer any five questions. All questions carry equal marks. Give neat and well labelled sketches. Use of calculator is permitted.

1. (a) Calculate the hydraulic mean depth, top width, and section factor for the following channel.
A trapezoidal section ($b=3.0 \mathrm{~m}, \mathrm{z}=1$) carries a flow at a depth of 1.25 m , when its bed slope is 0.0004 and $\mathrm{n}=0.035$
(b) Compute the discharge of channel in (a) 5 above.
2. (a) A 6 m . wide rectangular channel carries a $\mathbf{1 2}$ flow of $12 \mathrm{~m}^{3} / \mathrm{s}$ at a depth of 1.0 m . Calculate :
(i) E
(ii) Y_{c}
(iii) V_{c}
(iv) E_{c}
(b) Considering y and $y_{c^{\prime}}$ determine whether the channel is steep or mild.
3. (a) Sketch out a hydraulic jump formed on a horizontal bed of a rectangular channel showing sequent depths and energy lines.
(b) If a rectangular channel has an energy loss 8 of 6.25 m through a jump in the flow while the shooting flow has $\mathrm{F}=9$, find the sequent depth.
4. (a) Sketch out practical situation of flow that 12 develop : $M_{1} ; M_{2} ; M_{3} ; S_{1} ; S_{2}$; and S_{3} profiles, giving various zones and the profile shapes.
(b) How are rapidly varied flows different from 2
gradually varied flows?
5. (a) Name various gradually varied flow 4 computational procedures.
(b) Describe any one method of G.V.F. 10
computations in detail.
6. (a) Derive the expressions that define Reynolds and Froude numbers.
(b) What is the significance of these numbers 7
in open channel flow?
7. Write short notes on any four of the following.
(a) Pressure distribution in an open channel flow with concave and convex bed profiles
(b) Critical flow and critical slope
$4 \times 31 / 2=14$
(c) Dimensions of \mathbf{n} and \mathbf{c}
(d) Hydraulic exponent
(e) Resistance to flow.
