No. of Printed Pages : 5

ET-201(B)

Sec. 1

01852	E B J	B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering) B.Tech. (Aerospace Engineering) Term-End Examination June, 2011 ET-201(B) : ENGINEERING THERMODYNAMICS				
) H					
	ET-					
	Time	: 3	hours	Maximum Marks	; : 70	
	Note	:	Answer marks.	any seven questions. All questions carry e Use of steam tables and calculator is perm	e qual itted.	
	1.	(a)	(i) (ii)	What is meant by thermodynamic equilibrium? Explain with simple sketches. Thermodynamic systems - closed, open, isolated.	2+3	
		(b)	A p reco gau vacu pres (i) (ii)	ressure gauge fitted on a steam boiler rds a pressure of 30 bar. The vacuum ge on the condenser indicates the num of 0.95 bar. If the atmospheric sure is 1 bar, calculate. absolute pressure in the steam boiler. absolute pressure in the condenser.	5	
	2.	(a)	Defi diag pres atm	ne pressure. Explain with the help of a gram showing relation between gauge ssure, vacuum pressure, and ospheric pressure.	5+5	

ET-201(B)

1

- system (b) undergoes А closed а thermodynamic cycle ABCDA. The heat transfer per minute during processes AB, BC and CD are -500 kJ, 10,000 kJ, and -1000 kJ respectively. The work transfers per second during processes AB, BC, CD, and DA are -10,000, zero, 17,000 and -1000 kJ respectively. Find the heat transfer during the process DA and net rate of work input in kW.
- 3. (a) Explain the following terms relating to steam formation :
 - (i) Sensible heat of water

5+5

- (ii) Latent heat of steam,
- (iii) Dryness fraction of steam
- (iv) Enthalpy of wet steam, and
- (v) Super heated steam
- (b) Determine the total work done by a gas system following an expansion process as shown in Figure - 1.

ET-201(B)

- 4. (a) What do you mean by "Perpetual motion 5+5 machine of first kind PMM 1" ?
 - (b) A reversible power cycle is used to drive a reversible heat pump cycle. The power cycle take in Q₁ heat units at T₁ and rejects Q₂ at T₂. The heat pump abstracts Q₄ from the sink at T₄ and discharges Q₃ at T₃. Develop

an expression for the ratio $\frac{Q_4}{Q_1}$ in terms of

the four temperatures.

- 5. (a) Explain in brief the Clausius statement of 5+5 second law of thermodynamics.
 - (b) A carnot cycle operates between source and sink temperature of 250°C and -15°C. If the system receives 90 kJ from the source, find :
 - (i) Efficiency of the system
 - (ii) The net work transfer
 - (iii) Heat rejected to sink.
- 6. (a) Define heat engine, refrigerator and heat 5+5 pump.
 - (b) A heat engine receives heat at the rate of 1500 kJ/min and gives an output of 8.2 kW.
 Determine :
 - (i) The thermal efficiency
 - (ii) The rate of heat rejection

ET-201(B)

- 7. (a) What do you mean by the term "Entropy" ? 5+5 Prove that entropy is a property of a system.
 - (b) Two carnot engines combined in series operate between temperatures of 906 K and 586 K. What should be the intermediate temperature so that both the engines produce equal work.
- 8. (a) An inventor claims to have developed a 5+5 cyclic engine which exchanges heat with reservoirs at 130°C and -40°C. It receives only 2,100 kJ/min of heat and develops 17.66 kW. Is his claim feasible ?
 - (b) Steam initially at 1.5 MPa, 300°C expands reversibly and adiabatically in a steam turbine to 40°C. Determine the ideal work output of the turbine per kg of steam.
- (a) The co-efficient of performance of a carnot 5+5 refrigerator, when it extracts 8350 kJ/min from a heat source is 5. Find the power required to run the compressor.
 - (b) Explain in brief the simple vapour absorption refrigeration system.

ET-201(B)

P.T.O.

- **10.** (a) Describe in brief the various non- 5+5 conventional energy sources.
 - (b) The temperature in a refrigerator coil is 267 K and that in the condenser coil is 295 K. Assuming that the machine operates on the reversed carnot cycle, calculate.
 - (i) COP (ref.)
 - (ii) The refrigerating effect per kW of input work
 - (iii) The heat rejected to the condenser