B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering) B.Tech. (Aero space Engineering)

Term-End Examination
June, 2011

ET-201(A) : MECHANICS OF FLUIDS

Time : 3 hours
Maximum Marks : 70
Note: Attempt any seven questions. Use of calculator is permitted.

1. (a) The velocity distribution, for small values of $\mathbf{5 + 5}$ y, in laminar boundary layer on a flat plate is given by the equation.

$$
u=5 y-2 y^{3}
$$

in which u is the velocity in m / s at a distance y metre above the plate. Determine, shear stress at $y=0$ and $y=0.25 \mathrm{~m}$ if $\mu=1.85 \times 10^{-5}$ Pas
(b) Find the increase in the pressure required to reduce the volume of water by 0.8 percent if its bulk modulus of elasticity is $2.075 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$.
2. (a) A wooden block of width 2 m , depth $1.5 \mathrm{~m}, 5+5$ and length 4 m floats horizontally in water. Find the volume of water displaced and position of centre of buoyancy. The specific gravity of wooden block is 0.7 .
(b) The velocity components in a twodimensional flow are :

$$
\begin{aligned}
& u=8 x^{2} y-\frac{8}{3} y^{3}, \text { and } \\
& v=-8 x y^{2}+\frac{8}{3} x^{3},
\end{aligned}
$$

Show that these velocity components represent a possible case of an irrotational flow.
3. (a) The water is flowing through a pipe having $5+5$ diameter 20 cm and 15 cm at section 1 and 2 respectively. The rate of flow through pipe is 40 litres $/ \mathrm{sec}$. The section 1 is 6 m above the datum line and section 2 is 3 m above the datum. If the pressure at section 1 is $29.43 \mathrm{~N} / \mathrm{cm}^{2}$ find the intensity of pressure at section 2 .
(b) If a 300 mm diameter pipe carrying $0.212 \mathrm{~m}^{3}$ discharge of oil of relative density 0.8 has $200 \mathrm{kN} / \mathrm{m}^{2}$, pressure at a section 10 m above the datum, determine total energy per unit mass of fluid.
4. (a) Determine whether the specified flows are $5+5$ rotational or irrotational.
(i) $\quad u=y, v=-\frac{3}{2} x$, and
(ii) $u=x y^{2}, v=x^{2} y$
(b) A 50 mm diameter tube gradually expands to 100 mm diameter tube in a length of 10 m . If the tube makes an angle of 20° in

Figure - 1
upward direction with the horizontal as shown in figure - 1, determine the pressure p_{2} at the exit if the tube carries a discharge of 3.925 litres/sec and the inlet pressure p_{1} is $60 \mathrm{kN} / \mathrm{m}^{2}$, assuming
(i) no energy loss and
(ii) a loss of 0.20 m
5. (a) Oil of relative density 0.80 flows through a pipe line which changes in its size from 150 mm diameter at section A to 300 mm diameter at section B, section B being 4.5 m higher than section A. If the gauge pressure at A and B are $200 \mathrm{kN} / \mathrm{m}^{2}$ and $140 \mathrm{kN} / \mathrm{m}^{2}$ respectively, determine the direction of flow and energy loss when the pipe carries discharge of $0.110 \mathrm{~m}^{3} / \mathrm{sec}$.
(b) Find the gauge pressure and absolute pressure in $\mathrm{N} / \mathrm{m}^{2}$ at a point 4 m below the free surface of a liquid of sp. gr. 1.2, if the atmospheric pressure is equivalent to 750 mm of mercury.
6. (a) An agitator of diameter D rotates at a $5+5$ speed N in a liquid of density ρ and viscosity μ. Show that the power ρ required to mix the liquid is expressed by a functional form.

$$
\frac{\mathrm{P}}{\rho \mathrm{~N}^{3} D^{5}}=f\left(\frac{\rho \mathrm{ND}^{2}}{\mu}, \frac{\mathrm{~N}^{2} \mathrm{D}}{\mathrm{~g}}\right)
$$

(b) Differentiate between Laminar flow and turbulent flow.
7. (a) Is turbulence always undesirable ? If your $\mathbf{5 + 5}$ answer is yes, give reasons. If your answer is negative give examples where turbulence is advantageous.
(b) An oil having a viscosity of 0.096 Pas and a specific gravity of 1.59 flows through a horizontal pipe of 5 cm diameter with a pressure drop of $5.886 \mathrm{kN} / \mathrm{m}^{2}$ per metre length of the pipe.

Determine
(i) the rate of flow in $\mathrm{kg} / \mathrm{min}$, and
(ii) the shear stress at the pipe wall.
8. (a) The chimney of a boiler house is 50 m tall and has an outside diameter of 3 m . Compute the overturning moment about the base if a $30 \mathrm{~m} / \mathrm{s}$ wind blows past it at the standard atmospheric conditions.
(b) Give four examples in every day life where formation of boundary layer is important.
9. (a) With neat sketches explain the development of a boundary layer along a thin flat smooth plate held parallel to a uniform flow and explain its salient features.
(b) Determine the terminal velocity of a spherical steel ball of diameter 50 mm when dropped in a large mass of water. Assume that the specific gravity of steel is 8.0 and that the C_{D} is 0.4.
10. Write short notes any five of the following :
$5 \times 2=10$
(a) Aero foil
(b) Nozzle
(c) Bulk Modulus
(d) Drag
(e) Continuity Equation
(f) Irrotational flow
(g) Reynold's Number
(h) Viscosity

