B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering)

Term-End Examination
June, 2011

ET-105(B) : CHEMISTRY

Time : 3 hours
Maximum Marks : 70
Note: Answer all the questions. Use of calculator is allowed.

1. Attempt any two of the followings : $\mathbf{2 \times 5}=\mathbf{1 0}$
(a) Which of the following statements about $\mathrm{H}_{2} \mathrm{O}_{2}$ is/are correct?
(i) $\mathrm{H}_{2} \mathrm{O}_{2}$ is a linear molecule.
(ii) Concentrated $\mathrm{H}_{2} \mathrm{O}_{2}$ in water is generally expressed as 20 or 30 volumes of $\mathrm{H}_{2} \mathrm{O}_{2}$.
(iii) $\mathrm{H}_{2} \mathrm{O}_{2}$ is an oxidising agent.
(iv) $\mathrm{H}_{2} \mathrm{O}_{2}$ is a reducing agent.
(b) For the reaction:

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

at a given temperature, the equilibrium amount can be increased by :
(i) adding suitable catalyst.
(ii) adding an inert gas.
(iii) decreasing the volume of the container.
(iv) increasing the amount of $\mathrm{CO}(\mathrm{g})$.
(c) Which of the following groups in aromatic compounds is/are electron releasing group(s) ?
(i) $-\mathrm{CH}_{3}$
(ii) $\quad \stackrel{+}{+} \mathrm{H}_{3}$
(iii) $\quad-\mathrm{NO}_{2}$
(iv) $-\mathrm{OCH}_{3}$
2. Attempt any three of the following :
(a) Complete and name the following reaction:

(b) Haber - Bosch process for the manufacture of NH_{3} is based on the reaction :

$$
\begin{aligned}
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \stackrel{\text { Catalyst }}{\rightleftharpoons} & 2 \mathrm{NH}_{3}(\mathrm{~g}) ; \\
& \Delta_{\mathrm{r}} \mathrm{H}^{\circ}=-46.0 \mathrm{k} \mathrm{Jmol}^{-1} \\
& \mathrm{~K}_{\mathrm{P}}^{\circ}=14
\end{aligned}
$$

Which of the following information regarding the above reaction is correct?
(i) On adding N_{2}, the equilibrium is shifted to right side with an increase in entropy.
(ii) The equilibrium constat $\mathrm{k}_{\mathrm{p}}^{\circ}$ increases with increase in temperature.
(iii) $2 \mathrm{G}_{\mathrm{m}}\left(\mathrm{NH}_{3}\right)=\mathrm{G}_{\mathrm{m}}\left(\mathrm{N}_{2}\right)+3 \mathrm{G}_{\mathrm{m}}\left(\mathrm{H}_{2}\right)$ - (at equilibrium) where G_{m} represents the molar Gibbs function of the species enclosed in brackets.
(iv) The use of catalyst helps increasing the rate of forward reaction more than that of backward reaction thereby increasing the yield of NH_{3}.
(c) A 0.004 M solution of $\mathrm{K}_{2} \mathrm{SO}_{4}$ is isotonic with a 0.010 M solution of glucose at the same temperature. The apparant percent degree of dissociation of $\mathrm{K}_{2} \mathrm{SO}_{4}$ is :
(i) 25%
(ii) 50%
(iii) 75%
(iv) 100%
(d) The reaction $\mathrm{A} \rightarrow \mathrm{B}$ proceeds through the following steps :
$\mathrm{A} \rightarrow \mathrm{C} \rightarrow \mathrm{D} \rightarrow \mathrm{B}$. If $\Delta \mathrm{S}(\mathrm{A} \rightarrow \mathrm{C})=60 \mathrm{eu}$, $\Delta S(\mathrm{C} \rightarrow \mathrm{D})=20$ eu and $\Delta \mathrm{S}(\mathrm{B} \rightarrow \mathrm{D})=10 \mathrm{eu}$, the entropy change for $A \rightarrow B$ would be
(i) 70 eu
(ii) $\quad-70 \mathrm{eu}$
(iii) 90 eu
(iv) -90 eu
3. Attempt any three of the followings:
(a) Define a unit cell. How many types of crystals are known? Name them.
(b) What percent is the void space present in a monoatomic FCC unit cell? What is the coordination number of an atom in a FCC unit cell ?
(c) Given :

$$
\begin{aligned}
& {\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+} \rightleftharpoons \mathrm{Ag}\left(\mathrm{NH}_{3}\right)^{+}+\mathrm{NH}_{3} ;} \\
& \mathrm{K}_{1}^{\circ}=1.4 \times 10^{-4}
\end{aligned}
$$

$$
\mathrm{Ag} \quad\left(\mathrm{NH}_{3}\right)^{+} \rightleftharpoons \mathrm{Ag}^{+}+\mathrm{NH}_{3}
$$

$$
\mathrm{K}_{2}^{\circ}=4.3 \times 10^{-4}
$$

The instability constant of the complex :
$\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+} \rightleftharpoons \mathrm{Ag}^{+}+2 \mathrm{NH}_{3}$ is equal to :
(i) 7.14×10^{3}
(ii) 2.33×10^{3}
(iii) 6.02×10^{-8}
(iv) 1.66×10^{7}
(d) Calculate $\Delta \mathrm{G}^{\circ}$ and $\log _{10} \mathrm{~K}$ for the reaction $A \rightleftharpoons B$.

Given : $\Delta_{\mathrm{r}} \mathrm{H}_{298 \mathrm{k}}^{\circ}=-54.07 \mathrm{k} \mathrm{J} \mathrm{mol}^{-1}$

$$
\begin{aligned}
\Delta_{\mathrm{r}} \mathrm{~S}_{298 \mathrm{k}}^{\circ} & =10 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \\
\mathrm{R} & =8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}
\end{aligned}
$$

4. Attempt any three of the following :
(a) What is an addition polymer ? How polyethylene forms from ethylene monomers? Give relevant steps.
(b) Give IUPAC name of the following :
(i) HCOOH
(ii) $\mathrm{CH}_{3}-\underset{\substack{\mathrm{C}}}{\substack{\mathrm{OH}}} \begin{gathered}\mathrm{CH}_{2} \\ \\ \\ \mathrm{CH} \\ \mathrm{Cl} \\ \mathrm{Cl}\end{gathered}-\mathrm{CHO}$

(iii)

(iv)

(v)

(c) Is O_{2} paramagnetic or diamagnetic? Justify your answer? What is the bond order of O_{2} ?
(d) The standard enthalpy and entropy of vaporization of a liquid are $25 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $100 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. What will be the boiling point of the liquid?
5. Attempt any three of the followings :

Note : Each entry in column X in A, B, C and D is some way related to the entries in column Y and Z. Match the appropriate entries. As an example : In part- A , ' $\mathrm{H}_{2} \mathrm{O}^{\prime}$ in column X is related to 'high dielectric constant' in column Y and is also related to 'two pairs of electrons in column Z, so the answer will be $A:(f)-(c)-(a)$

A.	x	Y	Z
(a)	NH_{3}	LCAO	two pairs of electrons
(i)	BCl_{3}	sp hybridization	polycentric
(c)	BCCl_{2}	high dielectric constant	triangular planar
(d)	$\mathrm{H}_{3} \mathrm{NBL}_{3}$	sp ${ }^{3}$ hybridization	linear
(e)	Molecular orbital	sp^{2} hybridization	one side sharing of electrons
(f)	$\mathrm{H}_{2} \mathrm{O}$	coordinate covalent bond	one lone pair of electrons

B.

	$\mathbf{\| c \|} \mathbf{\| c \|}$	\mathbf{y}	\mathbf{Z}
(a)	Animal charcoal	kJK^{-1}	watch spring
(b)	Invar	cm^{-1}	1.3805×10^{-26}
(c)	Nichrome	Co, Ni	sugar refining
(d)	Rydberg	Fe, Ni	cutlery
(e)	Stainless steel	$\mathrm{Fe}, \mathrm{Cr}, \mathrm{Ni}, \mathrm{C}$	109677
(f)	Boltzmann constant	$\mathrm{C}, \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$	heating element

C.

	$\mathbf{\| c \|} \mathbf{\| c \|}$	$\mathbf{\| c \|}$	\mathbf{Y}
	Z		
(a)	Two water of crytallization	ferrous sulphate	styptic reagent
(b)	Five water of crystallization	Mohr's salt	washing soda
(c)	Seven water of crystallization	Sodium carbonate	green vitriol
(d)	Six water of crystallization	calcium sulphate	blue vitriol
(e)	Ten water of crystallization	Copper sulphate	stable salt of iron
(f)	Twelve water of crystallization	alum	gypsum

D.

	X	\mathbf{Y}	Y
(a)	n-Butane	dimethyl ether	chiral carbon
(b)	n-Propyl alcohol	methyl propyl ether	chain isomers
(c)	Ethyl alcohol	trans-but-2-ene	metamerism
(d)	Diethyl ether	isobutane	functional isomers
(e)	cis-But-2-ene	optically active	positional isomers
(f)	$\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2}-\mathrm{CH}_{3}$	isopropyl alcohol	geometrical isomers

