B.Tech. Civil (Construction Management) /
 B.Tech. Civil (Water Resources Engineering)
 B.Tech. (Aerospace Engineering)

Term-End Examination
June, $2011 \quad 04564$

ET-101(B) : MATHEMATICS-II

(Probability \& Statistics)

$$
\text { Time : } 3 \text { hours } \quad \text { Maximum Marks : } 70
$$

Note : Attempt any Seven questions. All questions are of equal marks. Use of calculator is permitted.

1. (a) Can events be : 4
(i) mutually exclusive and exhaustive
(ii) exhaustive and independent
(iii) mutually exclusive and independent?

Justify your answer in each case by giving an example.
(b) The probability of n independent events are $\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots \ldots \ldots ., \mathrm{p}_{\mathrm{n}}$. Find the probability that at least one of the events will happen. Using this, find the probability of obtaining at least one 6 in a throw of four dice.
2. (a) Suppose an assembly plant receives its voltage regulators from three different sources, 60% from $\mathrm{B}_{1}, 30 \%$ from B_{2} and 10% from B_{3}. Let $95 \%, 80 \%$ and 65% of the supply received respectively from the sources B_{1}, B_{2} and B_{3} perform as per specifications laid. If A is the event that a voltage regulator received at the plant performs as per specifications then find $\mathrm{P}(\mathrm{A})$.
(b) For the two events A and B, prove that $\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \leq \mathrm{P}(\mathrm{A}) \leq \mathrm{P}(\mathrm{A} \cup \mathrm{B}) \leq \mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$.
3. (a) Define a Poisson variate. Find its mean and
variance. Describe a situation where Poisson model is applicable.
(b) Two cards are drawn from a pack of 52 cards. Find the probability that draw includes an ace and a ten.
4. (a) For a normal distribution prove that mean $=$ mode $=$ median .
(b) In a production of iron rods the diameter X can be approximated to be normally distributed with mean 2 inches and S.D. 0.008 inches.
(i) What percentage of defectives can we expect if we set the acceptance limit at 2 ± 0.02 inches ?
(ii) How should we set the acceptance limits to allow for 4% defectives?
5. (a) The joint density of X and Y is given by :
$f(x, y)\left\{\begin{array}{l}\frac{12}{5} x(2-x-y), 0<x<1,0<y<1 \\ 0, \text { otherwise }\end{array}\right.$

Compute the conditional density of X, given that $Y=y$, where $0<y<1$.
(b) If X and Y are two independent random variables, then show that $\operatorname{Var}(a \mathrm{X}+b \mathrm{Y})=a^{2} \operatorname{Var}(\mathrm{X})+b^{2} \operatorname{Var}(\mathrm{Y})$.
6. (a) Let Xi assumes the value 1 with probability p and o with probability $q=1-p$. Verify that the Week Law of large Numbers holds for the sequence of independent and identically distributed random variables Xi's
(b) Suppose that the amount of weight W (in'000 pounds) that a certain span of a bridge can withstand without resulting in
structural damage is normally distributed with mean 400 and S.D. 40. Suppose that the weight (in'000 pounds) of a car is random variable with mean 3 and S.D. 0.3. How many cars would have to be on the bridge span for the probability of structural damage to exceed 0.1 ?
7. (a) Explain the following terms :
(i) Null hypothesis and alternative hypothesis.
(ii) Type I and Type II errors.
(b) Following data gives 11 measurements of the same object on the same instrument 2.7, $2.5,2.3,2.4,2.3,2.5,2.7,2.5,2.6,2.6,2.5$. At 1% level, test the hypothesis that the variance of the instrument is no more than 0.16.
8. (a) Let $X_{1}, X_{2}, \ldots X_{n}$ be a random sample from a population having a mean μ and variance σ^{2}. Show that;

$$
\overline{\mathrm{X}}=\frac{2}{n^{2}} \sum_{i=1}^{n} i \mathrm{X}_{i}
$$

is consistent estimator of μ.
(b) The life - time T of a component has pdf $f(t)=\alpha e^{-\alpha(t-\beta)}, t>\beta>0$. Based on a random sample of size n on T, find MLE of
(i) α, if β is known,
(ii) β, if α is known,
9. (a) The test runs with six models of an experimental engine showed that they operated respectively for $24,28,21,23,32$ and 22 minutes with a gallon of fuel. Obtain a 99% confidence interval for the average run time of engine with a gallon of fuel.
(b) The following are 10 measurements on some characteristic measured by same instrument by two technicians A and B. Is B more consistent than A at 5% level of significance.

\mathbf{A}	13	15	7	15	5	12	9	3	20	11
\mathbf{B}	12	7	2	8	6	9	5	7	6	8

