No. of Printed Pages : 4
ET-101(A)
B.Tech. Civil (Construction Management)/
B.Tech. Civil (Water Resources Engineering)
B.Tech (Aero space Engineering)

Term-End Examination
June, 2011

ET-101(A) : MATHEMATICS-I

Time : 3 hours
Maximum Marks : 70
Note: All questions are compulsory. Use of calculator is permitted.

1. Answer any five of the following :
(a) Evaluate the following limits, if they exist :
(i) $\lim _{x \rightarrow 0} \frac{\tan x}{\sqrt{x+5}-\sqrt{5}}$
(ii) $\lim _{x \rightarrow 0} \frac{\ln (1+x)-x}{1-\cos x}$
(b) Determine values of p and q for which the function f defined by :
$f(x)=\left\{\begin{array}{l}p x+q, \text { when } x \leq 0 \\ 1-\frac{2}{x^{2}+1}, \text { when } x>0\end{array}\right.$
is continuous at $x=0$
(c) Find $\frac{d y}{d x}$ when

$$
x=\mathrm{e}^{t}(\cos t+\sin t), y=\mathrm{e}^{t}(\cos t-\sin t)
$$

(d) If $y=\mathrm{e}^{\mathrm{m} \cos ^{-1} x}$, prove that

$$
\left(1-x^{2}\right) y_{2}-x y_{1}-\mathrm{m}^{2} y=0 .
$$

Hence find $y_{\mathrm{n}+2}$, using Leibnitz's theorem.
(e) Show that the function f defined
$f(x)=x^{3}-6 x^{2}+15 x-10$
is strictly increasing in every interval.
(f) If $z^{3}-x z-y=0$, prove that

$$
\frac{\partial^{2} z}{\partial x \partial y}=\frac{x+3 z^{2}}{\left(x-3 z^{2}\right)^{3}}
$$

2. Answer any four of the following :
(a) Evaluate the following integrals :
(i) $\int_{0}^{\pi / 2} \frac{\sin x-\cos x}{1+\sin x \cos x} d x$
(ii) $\int \mathrm{e}^{x} \cdot \frac{2+\sin 2 x}{1+\cos 2 x} d x$.
(b) Evaluate :
(i) $\int_{1}^{2} \frac{d x}{x\left(x^{3}+1\right)}$
(ii) $\int_{0}^{2}[x+1] \mathrm{d} x$, where $[t]$ denotes the greatest integer $\leq t$.
(c) Find the volume of the solid obtained by revolving the curve, $x=\mathrm{a} \cos \theta, y=\mathrm{b} \sin \theta$ about the axis of x.
(d) Taking 6 sub-divisions of the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, find the approximate value of $\int_{-\pi / 2}^{\pi / 2} \sqrt{\cos x} \mathrm{~d} x$, using the Trapezoidal Rule.
(e) Solve the differential equation: $\left(3 x^{2}+y^{2}\right) \mathrm{d} y+\left(x^{2}+3 y^{2}\right) \mathrm{d} x=0$.
3. Answer any four of the following :
(a) If a, b, c are constants whose sum is 3 and the vector field
$\overrightarrow{\mathrm{F}}=(\sin y+\mathrm{az}) \hat{i}+(x \cos y-\mathrm{bz}) \hat{j}+(\mathrm{c} x-y) \hat{k}$ is irrotational, then find their values.
(b) Find div $(\operatorname{grad} \phi)$, where $\phi=x^{3} y^{2} z^{4}$.
(c) For the function, $f=\frac{y}{x^{2}+y^{2}}$,
find the value of the directional derivative making an angle 60° with the positive direction of the axis of x at the point $(-1,1)$.
(d) Find the total work done in moving a particle in a force field given by

$$
\begin{aligned}
& \overrightarrow{\mathrm{F}}=3 x y \hat{i}-5 z \hat{j}+10 x \hat{k} \text { along the curve } \\
& x=t^{2}+1, y=2 t^{2}, \quad z=t^{3} \text { from } t=1 \text { to } t=2 .
\end{aligned}
$$

(e) If $\overrightarrow{\mathrm{F}}=\left(2 x^{2}-3 z\right) \hat{i}-2 x y \hat{j}-4 x \hat{k}$, then evaluate $\iiint_{V} \nabla \times \vec{F} \mathrm{dV}$, where V is the region bounded by $x=0, y=0, z=0$ and $2 x+2 y+z=4$.
4. Answer any three of the following : $3 \times 6=18$
(a) Prove that

$$
\begin{array}{r}
\left|\begin{array}{ccc}
a+b+c & -c & -b \\
-c & a+b+c & -a \\
-b & -a & a+b+c
\end{array}\right| \\
\\
=2(a+b)(b+c)(c+a) .
\end{array}
$$

(b) Find the eigen values and the eigen vectors of the matrix

$$
\mathrm{A}=\left[\begin{array}{lll}
2 & 2 & 1 \\
1 & 3 & 1 \\
1 & 2 & 2
\end{array}\right]
$$

(c) Solve the following system of linear equations by the matrix method :
$x-y+2 z=5$
$x+2 y+3 z=14$
$2 x-3 y+2 z=2$
(d) Show that:
$\mathrm{V}=\{(x, y, z) \mid x+y+z=0\}$ is a subspace of R^{3} and find a basis of V .

