B.Tech Mechanical Engineering / B.Tech Civil

 Engineering (BTMEVI/BTCLEVI)

 Engineering (BTMEVI/BTCLEVI)
 Term-End Examination

June, 2011
BIME-004 : FLUID MECHANICS
Time : 3 hours
Maximum Marks : 70
Note: Attempt any five questions each question carry equal marks. Use of non programmable scientific calculator is allowed.

1. Attempt any two questions :-
(a) Define and explain the following :
$2 \times 7=14$
(i) Viscosity of a fluid
(ii) Velocity potential function
(iii) Stream function
(iv) Centre of pressure.
(b) Define the following and give one practical example for each :
(i) Laminar flow
(ii) Turbulent flow
(iii) Steady flow
(iv) Uniform flow
(v) Critical and super critical flows.
(c) The velocity components in a two dimensional flow field for an incompressible fluid are as follows :
$\mathrm{u}=\frac{y^{3}}{3}+2 x-x^{2} y$ and $\mathrm{V}=x y^{2}-2 y-x^{3} / 3$
obtain an expression for the stream function ψ •
2. Attempt any Two questions:
(a) What is a manometer ? How are they classified? Explain any one of them.
(b) Explain the term meta centre' and 'meta centric height'. What are the conditions and equilibrium of a floating body and a submerged body?
(c) A solid cylinder of diameter 4.0 meter has a height of 3 meters. Find the metacentric height of the cylinder when it is floating in water with its axis vertical. The specific gravity of the cylinder $=0.6$.
3. Attempt any two questions: $2 \times 7=14$
(a) What is Euler's equation of motion ? How will you obtain Bernoulli's equation from it.
(b) What is pitot tube? How will you determine the velocity at any point with the help of pitot tube ?
(c) A pipe line carrying oil of specific gravity 0.87 , changes in diameter from 200 mm diameter at a position A to 500 mm diameter at a position B which is at a 4 meter higher level. If the pressures at A and B are $9.81 \mathrm{~N} / \mathrm{cm}^{2}$ and $5.886 \mathrm{~N} / \mathrm{cm}^{2}$ respectively and the discharge is 200 litre/s determine the loss of head and direction of flow.
4. Attempt all questions:
(a) State and explain Buckingham's π-theorem. Why this theorem is considered superior over the Rayleigh's method for dimensional analysis ?
(b) The frictional torque T of a disc of diameter D rotating at a speed N in a fluid of viscosity μ and density ρ in a turbulent flow is given
by $T=D^{5} N^{2} \rho \phi\left[\frac{\mu}{D^{2} N \rho}\right]$. Prove this by method of dimension.
5. Attempt any two parts:
(a) What do you understand by total energy line, hydraulic gradient line, pipes in series, pipes in parallel and equivalent pipe ? Briefly explain them.
(b) What is a compound pipe ? What will be loss of head when pipes are connected in series?
(c) A pipe line 60 cm diameter bifurcates at a Y-junction into two branches 40 cm and 30 cm in diameter. If the rate of flow in main pipe is $1.5 \mathrm{~m}^{3} / \mathrm{s}$ and mean velocity of flow in 30 cm diameter pipe is $7.5 \mathrm{~m} / \mathrm{s}$. determine the rate of flow in the 40 cm diameter pipe.
6. Attempt any two questions:
(a) Define displacement thickness. Drive an expression for the displacement thickness.
(b) Define the terms:
(i) Boundary layer
(ii) Boundary layer thickness
(iii) Drag
(iv) Lift and momentum thickness.
(c) Find displacement thickness and momentum thickness for the velocity distribution in the boundary layer given by

$$
\frac{u}{U}=2\left(\frac{y}{\delta}\right)-\left(\frac{y}{\delta}\right)^{2}
$$

7. Write short notes on the following :
(a) Venturimeter
(b) Syphon
(c) Energy correction factor for flow through circular pipe.
(d) Water hammer.
