BACHELOR OF TECHNOLOGY IN

Term-End Examination
June, 2011

BME-035 : INDUSTRIAL ENGINEERING \& OPERATIONS RESEARCH

Time : 3 hours

Maximum Marks : 70
Note: All questions carry equal marks. Assume any missing data suitably. Attempt FOUR questions from Section A and any THREE questions from Section B.

SECTION A

Attempt any four questions:

1. Define Productivity. What are different indicators for measuring it ? Why in India we have low agricultural productivity. Discuss different elements of Productivity Improvements. Give examples. $2+\mathbf{4 + 4}$
2. Explain "Work - Sampling" as system for $\mathbf{5 + 5}$ calculating standard time. Differentiate work sampling from Time - study with proper example. Use tabular format.
3. List down various tools of method study. Give situations where these tools are useful. Draw a Sample Flow Process Chart. $3+3+\mathbf{4}$
4. Discuss various requirement of a good product $5+5$ design. Discuss various steps of a New Product Development.
5. What is Design for Environment? Explain this concepts, its importance with the help of some example.
$5+2+3$
6. Explain the impact of following on working of an operation
$3+4+3$
(a) Noise
(b) Temperature and humidity
(c) Lighting

SECTION B

Attempt any three questions :
7. Solve the following problem using graphical 10 method.
$\operatorname{minimize} \mathrm{Z}=200 x_{1}+300 x_{2}$
such that $2 x_{1}+3 x_{2} \geq 1200$
$100 x_{1}+100 x_{2} \leq 40000$
$2 x_{1}+1.5 x_{2} \geq 900$
$x_{1} \geq 0$
$x_{2} \geq 0$
8. Solve the following linear programming problem $\mathbf{1 0}$ using simplex method and give comments.
maximize $\mathrm{Z}=3 x_{1}+2 x_{2}$
subject to $x_{1}-x_{2} \leq 1$

$$
\begin{aligned}
& x_{1}+x_{2} \geq 3 \\
& x_{1} \geq 0 \text { and } x_{2} \geq 0
\end{aligned}
$$

9. A car rental firm has one car in each of the five depots $D_{1}, D_{2}, D_{3}, D_{4}$ and D_{5} and a customer in each of the 5 cities $C_{1}, C_{2}, C_{3}, C_{4}$ and C_{5}. The distance between the depots and cities are given in table below. Assign cars to individual customer so as to minimize the total distance covered.

Depot	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}
	140	115	120	30	35
D_{2}	110	100	90	30	15
D_{3}	155	90	135	60	50
D_{4}	170	140	150	60	60
D_{5}	180	155	165	90	85

10. Describe Markov chain with the help of suitable example. Also provide applications of Markov Process especially for Discrete state space.
11. Write short note on any two of the following : $5 \times 2=10$
(a) Goal Programming
(b) Data Envelopment Analysis
(c) Game Theory
