BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING) B.Tech. (Aerospace Engineering)
 Term-End Examination
 June, 2011

 BME-021 : PRINCIPLES OF ELECTRICAL AND

 BME-021 : PRINCIPLES OF ELECTRICAL AND ELECTRONICS SCIENCE

 ELECTRONICS SCIENCE}

| Time : 3 hours \quad Maximum Marks : 70 | |
| :--- | :--- | :--- |
| Note: | Answer seven questions in all : Three questions from |
| | Section - A, three questions from Section - B, and |
| | question number one is compulsory. |

1. State whether the following assertions are true or false : $1 \times 10=10$
(a) An npn transistor can be used as a switch.
(b) A zener diode may be used as a voltage stabilizer.
(c) A 555 timer I.C. can not generate a square wave.
(d) A Flip-Flop output has only two stable states.
(e) The crystal frequency of a micro-computer designed using an 8085 MPU is twice the clock frequency.
(f) Greater the length of a magnetic circuit lower is its reluctance.
(g) When two capacitors 10 Micro Farad each are connected in parallel, the total capacitance is 5 Micro Farad.
(h) The current in a capacitor leads the applied voltage by 90°.
(i) Transformers make possible transmission of a.c. power over long distances.
(j) The current in a parallel resonant circuit is maximum at resonance.

SECTION - A

Attempt three questions from this section.
2. (a) State and explain Kirchhoff's current law. 5
(b) In Figure-1, find the value of voltage V at 5 node a, and currents $\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}$ using Kirchhoff's current law. (Resistances are in ohms.)

Figure-1
3. (a) Show a series resonant circuit diagramatically and give conditions under which it would resonate. Also give the resonance frequency in terms of inductance L and capacitance C.
(b) Show phase relationship of current in the circuit and voltage drop across R, L and C .
(c) In the circuit of figure - 2 , give.

4
(i) Value of capacitor C to give resonance
(ii) Current at resonance, I_{0}.
(iii) Q factor of the circuit.

Figure - 2
4. (a) What is a hysterisis loop as applied to magnetic materials? Describe ; how it is generated ?
(b) A ring has a mean diameter of 21 cms and a cross-sectional area of $10 \mathrm{~cm}^{2}$. The ring is made up of semicircular sections of cast iron and cast steel ; with each joint having an air-gap of 0.2 mm . Find the ampere-turns required to produce a flux of $8 \times 10^{-4} \mathrm{~Wb}$. The relative permeabilities of cast iron and cast steel are 166 and 800 respectively.
5. (a) List the main components of a power transformer. What do you mean by step-up and step-down transformers. How a transformer is used in economic transmission of power?
(b) A 4-pole, 3-phase induction motor operates from a supply whose frequency is 50 Hz . Calculate (i) the speed at which magnetic field of stator is rotating. (ii) the frequency of the rotor current when the slip is 0.03 . (iii) the frequency of the rotor current at stand still.
6. (a) Give relationship between voltage V applied across a capacitor C and charge Q developed on it. Three capacitors $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$ are connected in series. Give equivalent capacitance C.
(b) The capacitors $10 \mu \mathrm{~F}, 20 \mu \mathrm{~F}$ and $30 \mu \mathrm{~F}$ are connected in parallel, calculate (i) Charge on each capacitor when the network is impressed with a 200 volt d.c. supply. (ii) Total capacitance of the network.

SECTION - B

Attempt any three questions from this section
7. (a) Give the architecture of 8085 microprocessor diagramatically and briefly describe its different subsystems.
(b) When are the flags cr, s and z set. 2
(c) What are the lowest priority and highest 2 priority interrupts?
8. (a) How an npn transistor is formed using 5 n-type and p-type semiconductor materials ?
(b) How are the two junctions in bijunction 3
transistor biased for its operation?
(c) Give relationship between emitter current, 2 collector current and base current in a BJT.
9. (a) Why is an operational amplifier called so ?2What operations can it perform ?

(b) Show how an operational amplifier can be
used as a summing amplifier.
(c) Give the circuit of an astable multivibrator using 555 timer I.C.
10. (a) Give symbols and Truth Tables of AND, 4
and OR Logic gates.
(b) What is the main difference between asynchronous (ripple) and synchronous counters? Give scheme of a 4-element ripple counter using T-Flip Flops along with timing diagram at different outputs.
11. Write short notes on any two of the following :
$5 \times 2=10$
(a) Shift Registers
(b) Use of zener diode as a Voltage Regulator
(c) Use of an npn transistor as a common-base amplifier
(d) Flags in 8085 microprocessor

