BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING
 (COMPUTER INTEGRATED
 MANUFACTURING)

Term-End Examination

June, 2011

BME-020 : KINEMATICS \& DYNAMICS OF MECHANISMS

Time : 3 hours
Maximum Marks : 70
Note: Answer any five of the following questions. Use of scientific non programmable calculator is allowed.

1. (a) Derive the relation for ratio of tensions for $5+9$ a flat pulley.
(b) Find the minimum number of teeth on the pinion to avoid interference when it meshes with gears having gear ratios 1 and 3 for the following pressure angles :
(i) $14 \frac{1}{2}$ and
(ii) 20°. Assume standard teeth in the gears.
2. (a) Explain different type of kinematic pairs. $\mathbf{6 + 8}$
(b) Plot all the instantaneous centres for a slider crank chain $O A B$ and explain how velocity of piston can be expressed in terms of crank speed?
3. (a) Explain Coriolis' component of acceleration. 4+10
(b) A quick return motion mechanism is shown in Figure - 1. The crank rotates at $20 \mathrm{rad} / \mathrm{s}$ in anti-clockwise sense. Determine angular acceleration of the slotted link 3.

Figure-1
4. (a) Classify cams according to shape.
(b) A cam operates a flat faced follower. Draw cam profile for the following data :

Lift of follower	$=30 \mathrm{~mm}$
Base circle radius of cam	$=30 \mathrm{~mm}$
Angle of ascent with SHM	$=120^{\circ}$
Dwell angle after ascent	$=30^{\circ}$

Return angle of the follower with uniform acceleration and retardation. $=120^{\circ}$
5. (a) Explain Chebyshev's spacing of accuracy $\mathbf{4 + 1 0}$ points.
(b) A pinion of 8 cm pitch diameter drives a 25 cm pitch diameter gear having pressure angle equal to 20°. Both pinion and gear are mounted mid way on simply supported shafts. Make force analysis of the pair if input torque is 6000 N cm .
6. (a) A damped spring mass system has 4 kg mass $\mathbf{6 + 8}$ suspended by a helical spring of stiffness $10 \mathrm{~N} / \mathrm{cm}$. If damping factor is $40 \mathrm{Nm} / \mathrm{sec}$ determine.
(i) logarithmic decrement
(ii) number of cycles after which the original amplitude is reduced to 1%.
(b) A machine weighing 650 kg operates at 1500 rpm . It has and unbalance of magnitude 0.1 kgm . The damping factor of isolators over which machine mounted is 0.1 . Determine stiffness of isolators so that the transmissibility is less than or equal to 0.15 . Determine amplitude of force transmitted.
7. (a) Explain field balancing of large rotors.
(b) A shaft carries three pulleys A, B and C . The distance between A and B is 600 mm and that between B and C is 1200 mm . The pulleys A, B and C weigh $25 \mathrm{~N}, 20 \mathrm{~N}$ and 30 N respectively. Each of these pulleys has eccentricity equal to 25 mm . The angular position of out of balance masses in pulleys B and C with respect to that in pulley A are 90° and 210° respectively. Determine balancing masses to revolve each at radii 125 mm in two planes located mid way between the pulleys.
8. (a) Examine whether a six cylinder Inline I.C. $\mathbf{6 + 8}$ engine which is being used in buses and trucks is balanced or not. If it is not balanced, determine the magnitude of unbalance.
(b) The arms of a Porter governor are each 25 cm long and pivoted on the governor axis. The mass of each ball is 5 kg and mass of central load on the sleeve is 30 kg . The radius of rotation of the balls is 15 cm when the sleeve begins to rise and reaches a value of 20 cm for the maximum speed. Determine speed range.

