No. of Printed Pages : 4

BME-009

BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING)

Term-End Examination

June, 2011

BME-009 : COMPUTER PROGRAMMING AND APPLICATION

Time : 3 hours

3284

Maximum Marks : 70

Note : Attempt **any five** questions. All questions carry **equal** marks. Use of calculator is **permitted**.

1. (a) Prove the following relations.

7 + 7 = 14

(i)
$$\Delta\left(\frac{f_i}{g_i}\right) = \frac{g_i \Delta f_i - f_i \Delta g_i}{g_i g_{i+1}}$$

(ii)
$$\Delta + \nabla = \frac{\Delta}{\nabla} - \frac{\nabla}{\Delta}$$

(b) Compute an approximation value of f (1.35) and f (1.25) by using Newton's backward difference formula for the given data :

x	1	1.1	1.2	1.3	1.4
f(x)	7.0	8.093	9.384	10.891	12.632

P.T.O.

2. (a) Find the Lagrange interpolating polynomial that fits the following data values. 7+7=14

x	-1	2	3	4	
f (x)	-1	11	31	69	

Also determine the approximate value of f (1.5).

(b) Using Newton - Raphson method obtain a root of the equation.

$$x^3 - 5x + 1 = 0$$

correct to three decimal places.

Assume $x_0 = 0.0$

3. (a) Solve the following system of equations with the help of Gauss-Elimination method. 7+7=14r+u+z=7

$$x + 2y + 3z = 16$$
$$x + 3y + 4z = 22$$

(b) Find a real root of the equation

 $x \log_{10} x = 1.2$

by Regula-falsi method correct to four decimal places.

4. (a) Find a real root of the equation 7+7=14

 $x^4 - x - 10 = 0$

by using Bisection method correct to three decimal places.

(b) Solve the following equations with the help of Gauss - Seidel iteration method.

$$20x + y - 2z = 17$$

$$3x + 20y - z = -18$$

$$2x - 3y + 20z = 25$$

BME-009

(a) The velocity v(km/min) of a moped which starts from rest, is given at fixed intervals of time t (min) as follows : 7+7=14

t:	2	4	6	8	10	12	14	16	18	20
v :	10	18	25	29	32	20	11	5	2	0

Estimate approximately the distance covered in 20 minutes using Simpson's rule.

(b) Use Runge-Kutta method to find y when x = 1.2 in steps of 0.1, given that :

$$\frac{dy}{dx} = x^2 + y^2$$
 and y (1) = 1.5

- 6. (a) Write a C++ programme to calculate and print the roots of a quadratic equation 7+7=14 $ax^2+bx+c=0$
 - (b) Write a C++ programme to calculate and print the factorial of an integer.
- 7. (a) What are the output of the following two codes fragment in C++ ? Justify your answer.
 7+7=14

// version 1	// version 2
int $f = 1, i = 2;$	int $f = 1, i = 2;$
while $(+ + i < 5)$	do {
	f * = i;
f * = i;	} while (++i<5);
cout < < f ;	cout < < f ;
:	:

(b) Write a C++ program that prints the following numbers in descending order.
1 2 4 8 16 32 64 128

BME-009

8. (a) Write a C++ program to compute cosine series i.e, 7+7=14

$$\cos (x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + \frac{x^n}{n!}$$

(b) Write a C++ program to find out whether a year (entered in 4-digit number representing it) is a leap year.