BACHELOR OF TECHNOLOGY IN

 MECHANICAL ENGINEERING (COMPUTER INTEGRATEDMANUFACTURING)
Term-End Examination
June, 2011

BME-009 : COMPUTER PROGRAMMING AND APPLICATION

Time : 3 hours

Maximum Marks : 70
Note: Attempt any five questions. All questions carry equal marks. Use of calculator is permitted.
1.
(a) Prove the following relations.
$7+7=14$
(i) $\Delta\left(\frac{f i}{g i}\right)=\frac{\mathrm{g}_{\mathrm{i}} \Delta f_{i}-f_{i} \Delta \mathrm{~g}_{\mathrm{i}}}{\mathrm{g}_{\mathrm{i}} \mathrm{g}_{\mathrm{i}+1}}$
(ii) $\quad \Delta+\nabla=\frac{\Delta}{\nabla}-\frac{\nabla}{\Delta}$.
(b) Compute an approximation value of $f(1.35)$ and $f(1.25)$ by using Newton's backward difference formula for the given data :

x	1	1.1	1.2	1.3	1.4
$f(x)$	7.0	8.093	9.384	10.891	12.632

2. (a) Find the Lagrange interpolating polynomial that fits the following data values.

x	-1	2	3	4
$f(x)$	-1	11	31	69

Also determine the approximate value of $f(1.5)$.
(b) Using Newton - Raphson method obtain a root of the equation.

$$
x^{3}-5 x+1=0,
$$

correct to three decimal places.
Assume $x_{0}=0.0$
3. (a) Solve the following system of equations with the help of Gauss-Elimination method. 7+7=14

$$
\begin{aligned}
& x+y+z=7 \\
& x+2 y+3 z=16 \\
& x+3 y+4 z=22
\end{aligned}
$$

(b) Find a real root of the equation

$$
x \log _{10} x=1.2
$$

by Regula-falsi method correct to four decimal places.
4. (a) Find a real root of the equation $7+7=14$

$$
x^{4}-x-10=0
$$

by using Bisection method correct to three decimal places.
(b) Solve the following equations with the help of Gauss - Seidel iteration method.

$$
\begin{aligned}
& 20 x+y-2 z=17 \\
& 3 x+20 y-z=-18 \\
& 2 x-3 y+20 z=25
\end{aligned}
$$

5. (a) The velocity $v(\mathrm{~km} / \mathrm{min})$ of a moped which starts from rest, is given at fixed intervals of time $t(\mathrm{~min})$ as follows :

$\mathrm{t}:$	$\mathbf{2}$	4	6	8	10	12	14	16	18	20
$v:$	10	18	25	29	32	20	11	5	2	0

Estimate approximately the distance covered in 20 minutes using Simpson's rule.
(b) Use Runge-Kutta method to find y when $x=1.2$ in steps of 0.1 , given that :
$\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{2}+y^{2}$ and $y(1)=1.5$
6. (a) Write a C++ programme to calculate and print the roots of a quadratic equation $\quad 7+7=14$

$$
a x^{2}+b x+c=0
$$

(b) Write a C++ programme to calculate and print the factorial of an integer.
7. (a) What are the output of the following two codes fragment in $\mathrm{C}++$? Justify your answer.
$7+7=14$
// version 1 // version 2
int $\mathrm{f}=1, i=2 ; \quad$ int $\mathrm{f}=1, i=2$;
while $(++\mathrm{i}<5)$ do $\{$

$$
f^{*}=i
$$

$\mathrm{f} *=\mathrm{i} ; \quad\}$ while $(++\mathrm{i}<5)$;
cout $<$ <f; \quad cout $\ll \mathrm{f}$;
(b) Write a C++ program that prints the following numbers in descending order. $\begin{array}{llllllll}1 & 2 & 4 & 8 & 16 & 32 & 64 & 128\end{array}$
8. (a) Write a C++ program to compute cosine series i.e, $\quad 7+7=14$
$\cos (x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots .+\frac{x^{n}}{n!}$
(b) Write a C++ program to find out whether a year (entered in 4-digit number representing it) is a leap year.

