B.Tech. IN ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

Term-End Examination
June, 2011
BIEL-007 : SIGNALS AND SYSTEMS

Time : 3 hours
Maximum Marks : 70
Note : Attempt any seven questions.
All questions carry equal marks.
Use of calculator is allowed.

1. A discrete time signal is as shown in figure $\mathbf{1} \mathbf{1 0}$ sketch the following :
(a) $x(\mathrm{n}-3)$
(b) $x(3-n)$
(c) $x(2 \mathrm{n})$
(d) $x(\mathrm{n}) \mathrm{u}(3-\mathrm{n})$
(e) $x\left[(\mathrm{n}-1)^{2}\right]$

2. Write the steps to find the convolution sum of two
sequences and also find the convolution of following sequences.

$$
\begin{aligned}
x(n) & =1 ; n=-2,0,1 \\
& =2 ; n=-1 \\
& =0 \text { else where } \\
h(n) & =\delta(n)-\delta(n-1)+\delta(n-2)-\delta(n-3)
\end{aligned}
$$

3. (a) Determine whether or not each of the following signals is periodic. If a signal is periodic, specify its fundamental period.
(i) $\quad x(\mathrm{n})=\mathrm{e}^{\mathrm{j} 6 \pi \mathrm{n}}$
(ii) $\quad x(n)=e^{j \frac{3}{5}(n+1 / 2)}$
(iii). $x(n)=\cos \left(\frac{2 \pi}{3}\right) n$
(iv) $\quad x(n)=\cos \frac{\pi}{3} n+\cos \frac{3 \pi}{4} n$
(b) Determine if the system described by the following input - output equations is linear or nonlinear.
(i) $y(\mathrm{n})=x^{2}(\mathrm{n})$
(ii) $y(\mathrm{n})=\mathrm{n} x(\mathrm{n})$
4. Figure 2 shows a periodic square wave signal. 10 Obtain its fourier series representation.

Fig. 2
5. Consider an arbitrary signal $x(\mathrm{n})$ with fourier transform $X\left(\mathrm{e}^{\mathrm{j} \omega}\right)$. Express the fourier transform of the following signals in terms of $X\left(\mathrm{e}^{\mathrm{j} \omega}\right)$.
(a) $y(\mathrm{n})=x(2 \mathrm{n})$
(b) $y(\mathrm{n})= \begin{cases}x(n / 2) & \mathrm{n}, \text { even } \\ 0 & \mathrm{n}, \text { odd }\end{cases}$
6. Find the fourier transform of the following :
(a) $x(t)= \begin{cases}\frac{t+b}{b-a} & -b<t<-a \\ 1 & -a<t<b \\ \frac{t-b}{b-a} & a<t<b\end{cases}$
(b) $\quad x(\mathrm{n})=\left(\frac{1}{2}\right)^{\mathrm{n}-1} \cdot \mathrm{u}(\mathrm{n}-1)$
7. Use convolution to find $x(\mathrm{n})$ if $\mathrm{X}(\mathrm{z})$ is given by

$$
X(z)=\frac{1}{\left(1-\frac{1}{2} z^{-1}\right)\left(1+\frac{1}{4} z^{-1}\right)}
$$

8. Find the z - transform and ROC (Region of convergence) of the following sequences :-
(a) $\quad x(\mathrm{n})=\left(-\frac{1}{3}\right)^{\mathrm{n}} \mathrm{u}(\mathrm{n})-\left(\frac{1}{2}\right)^{\mathrm{n}} \cdot \mathrm{u}(-\mathrm{n}-1)$
(b) $\quad x(n)=-b^{n} u(-n-1)$
9. Determine the impulse response of the system described by difference equation $y(\mathrm{n})=y(\mathrm{n}-1)-0.5 y(\mathrm{n}-2)+x(\mathrm{n})+x(\mathrm{n}-1)$. Plot the pole zero pattern.
10. Write short notes on any two:
(a) Region of convergence (ROC).
(b) Classification of signals.
(c) Properties of Fourier Transform.
