(BTCSVI / BTCEVI / BTELVI) B. Tech. (Degree)

Term-End Examination
June, 2011

BICE-007 : MATHEMATICS - III

Time : 3 hours
Maximum Marks : 70
Note: There are seven questions. Attempt any five questions.
All questions carry equal marks.

1. (a) If $u-v=(x-y)\left(x^{2}+4 x y+y^{2}\right)$ and 7 $f(z)=u+i v$ is an analytic function of $z=x+i y$, find $f(z)$ in terms of z.
(b) Find the Laurent's expansion for :
$f(z)=\frac{7 Z-2}{z^{3}-z^{2}-2 z}$ in the regions given by
(i) $0<|z+1|<1$
(ii) $1<|z+1|<3$
2. (a) Determine the poles of the following 7 function and residues at each pole :
$f(z)=\frac{Z-1}{(z+1)^{2}(z-2)}$
(b) For a moderately skewed data, the arithmatic mean is 100 , the variance is 35 and Karl pearson's coefficient of skewness is 0.2 . find its mode and median.
3. (a) Employ the method of least squares to fit a parabola $y=a+b x+c x^{2}$ in the following data :
$(x, y):(-1,2),(0,0),(0,1),(1,2)$.
(b) Compute the rank correlation coefficient for the following data :

Person :	A	B	C	D	E	F	G	H	I	J
Rank in maths :	9	10	6	5	7	2	4	8	1	3
Rank in physics :	1	2	3	4	5	6	7	8	9	10

4. (a) For 10 observations on price (x) and supply (y), the following data were obtained $\quad \Sigma x=130, \quad \Sigma y=220, \quad \Sigma x^{2}=2288$, $\Sigma y^{2}=5506$, and $\Sigma x y=3467$.
Obtain the two lines of regression and estimate the supply when the price is 16 units.
(b) Find the probability that at most 5 defective components will be found in a lot of 200, if experience shows that 2% of such components are defective. Also, find the probability of more than 5 defective components. (Given : $\mathrm{e}^{-4}=0.018$).
5. (a) Using Regula-falsi method, find the smallest positive root of the equation $x-e^{-x}=0$ correct to three decimal places.
(b) Find the cubic polynomial which takes the following values :

$x: 0$	1	2	3
$f(x): 1$	2	1	10

6. (a) Using Simpson's one-third rule, evaluate 7 $\int_{0}^{6} \frac{\mathrm{~d} x}{(1-x)^{2}}$ with six subintervels.
(b) Apply Runge-Kutta method to solve the 7 differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}=x y^{1 / 3}, y(1)=1$ for $y(1.1)$.
7. Attempt any two parts :
$2 \times 7=14$
(a) Find the order of convergence of NewtonRaphson method.
(b) State and prove Cauchy's Integral formula.
(c) Define Chi-square test with its parameters and discuss the properties of chi-square test.
(d) Define t -distribution with its parameters and discuss the properties of t-distribution.
