B.Tech. IN COMPUTER SCIENCE AND ENGINEERING (BTCSVI)

Term-End Examination
June, 2011

BICS-010 : FORMAL LANGUAGES AND AUTOMATA

Time : 3 hours
Maximum Marks : 70
Note: There are seven Question. Question No. 7 is compulsory. Attempt any four more question out of question number 1 to 6.

1. (a) Define the Chomsky hierarchy of language. 8 Find the language generated by following grammar
$G=(\{S, A\},\{a, b, c\}, P, S)$ where P is defined as

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{aSb} \mid \mathrm{A} \\
& \mathrm{~A} \rightarrow \mathrm{aAc} \mid \epsilon
\end{aligned}
$$

(b) Minimize the following automata

2. (a) Construct the finite automata for following language
(i) all string with even no. of 0's and 1's over alphabet $\{0,1\}$.
(ii) all string over $\{0,1\}$ whose decimal equivalent is divisible by 3 .
(b) Illustrate the pumping Lemma for 7 formal language. Prove that language $\mathrm{L}=\left\{\mathrm{i}^{\mathbf{2}^{2}} \mid \mathrm{i} \geq 0\right\}$ is not regular.
3. (a) Show that CFG, G with following 7 production $\mathrm{S} \rightarrow \mathrm{a}|\mathrm{Sa}| \mathrm{bSS}|\mathrm{SSb}| \mathrm{SbS}$ is an ambiguous grammar. Convert the above grammar into unambiguous grammar.
(b) Convert the grammar in Chomosky Normal 7 form
$\mathrm{S} \rightarrow \mathrm{ABa}$
$\mathrm{A} \rightarrow \mathrm{aab}$
$B \rightarrow A c$
4. (a) Design a PDA to accept the following 7 language

$$
\mathrm{L}=\left\{0^{n_{1}} 1^{n} \mid \mathrm{n} \geq 1\right\}
$$

(b) Prove or disprove whether the following language is context free or not ?

$$
\begin{equation*}
\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{~b}^{\mathrm{n}} \mathrm{a}^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\} \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
L=\left\{a^{n} b^{n} c^{m} \mid n \geq 1, m \geq 0\right\} \tag{ii}
\end{equation*}
$$

5. (a) Define a Turing Machine mathematically. For $\Sigma=\{a, b\}$ design a TM that accepts the language $L=\left\{a^{n} b^{n} \mid n \geq 1\right\}$.
(b) Explain the post correspondence problem. Find at least three solution to PCP defined by the dominoes

1	10	10111
111	0	10

6. (a) Prove that a language is recursively 7 enumerable if and only if its complement is recursively enumerable.
(b) In context of primitive recursive function 7 state the initial function and rules of primitive recursion and composition.
7. Write down the short notes on following. Attempt 14 any four :
(a) Halting Problem
(b) Undecidability
(c) Mealy Machine Vs Moore Machine
(d) Universal Turing Machine
(e) NPDA
