B.Tech. IN COMPUTER SCIENCE AND
 ENGINEERING (BTCSVI)

Term-End Examination
June, 2011

BICS-008 : DISCRETE MATHS STRUCTURE

Time : 3 hours
Maximum Marks : 70
Note : Attempt any seven questions. All questions carry equal marks. All the questions are to be answered in english language only.

1. Prove that the relation R on the set $N \times N$ defined 10 by $(a, b) R(c, d) \Leftrightarrow a+d=b+c$ for all $(a, b),(c, d)$ $\epsilon \mathrm{N} \times \mathrm{N}$ is an equivalence relation.
2. Let $N=\{0,1,2,3, \ldots \ldots$.$\} . Define functions f, g, \quad 10$ and h from set N to N by
$\mathrm{f}(\mathrm{n})=\mathrm{n}+1$
$\mathrm{g}(\mathrm{n})=2 \mathrm{n}$
$h(n)=\left\{\begin{array}{l}0 \text { if } n \text { is even } \\ 1 \text { if } n \text { is odd }\end{array}\right.$
Compute go(fog)oh
Is the function h inversible ?
Is the function f onto ?
3. If Q^{+}be the set of all positive rational numbers 10 and * be a binary composition in Q^{+}defined by $a^{*} b=\frac{a b}{3}, a, b \in Q^{+}$, show that $\left(Q^{+}, *\right)$ is a group. Find the identity of the group.
4. (a) Prove that the set $\{1,-i, i, 1\}$ is an abelian 5 multiplicative finite group of order 4.
(b) Prove that the set of cube roots of unity is 5 an abelian finite group with respect to multiplication.
5. Define Isomorphic lattice. Show that the lattice $\mathbf{1 0}$ L and L ' given below are not isomorphic :
L:

L':

6. Simplify $F(A, B, C, D)=\Sigma(0,1,4,5,6,8,9,12,13,14)$ 10 using Karnaugh Map.
7. Show that the given formula is a Tautology.

$$
((P \vee Q) \wedge 7(7 P \wedge(7 Q \vee 7 R))) \vee(7 P \wedge 7 Q) \vee(7 P \wedge 7 R)
$$

8. (a) What do you understand by fields? Explain with axioms.
(b) Define Rings with the axioms. 5
9. Solve the recurrence relation10
$a_{r}-7 a_{r-1}+10 a_{r-2}=0$
by the method of generating functions with the initial conditions, $a_{0}=3$ and $a_{1}=3$.
10. Write short notes on any two of the following:
(a) Bipartite graphs and Planar graphs with examples.
(b) Euler and Hamiltonian paths with examples.
(c) Explain pre and post order Binary tree traversal with examples.
